共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell cycle analysis of asynchronous cell populations by flow cytometry using bromodeoxyuridine label and Hoechst-propidium iodide stain. 总被引:4,自引:0,他引:4
Continuous labelling of cells with deoxybromouridine (BrdUrd) followed by staining with a bis-benzimidazole (Hoechst 33258) and a phenanthridinium (propidium iodide or ethidium bromide) allows the cells to be separated by flow cytometry according to the extent of their DNA replication. This BrdUrd-Hoechst/PI method has been used mainly to observe perturbations of the cell cycle in synchronously growing cells. In this paper we demonstrate that, when the method is applied to asynchronously dividing cells, more extensive information can be derived about the effects of cytotoxic and other treatments on the kinetics of the cell cycle. The interpretation of the data is explained, the effects of different types of cytotoxic agent are described, and the method is compared briefly to other methods for following cell cycle kinetics. 相似文献
3.
We studied the use of a dramatically reduced testing zone in combination with two-photon excitation and photon-burst analysis in high-throughput rare-event detection simulation using a modified flow cytometer. Two-photon excitation measurements were performed with a mode-locked titanium:sapphire laser. Fluorescence emission was measured with a photon-counting avalanche photodiode. Measured signal was analysed offline by autocorrelation and burst detection methods. Test samples were composed of full blood and orange fluorescent polystyrene nanospheres mixed in full blood. Results show that two-photon fluorescence excitation and time-correlation analysis provide a good signal-to-noise ratio for rare-event particle detection in a turbid sample environment. 相似文献
4.
BACKGROUND: Traditional culture methods well established in the past and still in use are not able to detect the environmental microorganisms that exist in a viable but not culturable state. A number of different fluorescence-based assays have been developed over the past decade to detect and identify viable bacteria in the environment. METHODS: We have developed a simple and rapid method for measuring the number and viability of immunolabeled bacteria by means of a two/three color fluorescence flow cytometric analysis. After washing, cultured bacteria in suspension were labeled with a rabbit polyclonal antibody recognizing the wall lipopolysaccharide complex. A secondary biotinylated anti-rabbit polyclonal antibody was added allowing the cells to be labeled with the streptavidin R-phycoerythrin-Cyanine 5 (RPE-Cy5) fluorochrome. Before flow cytometric analysis, bacterial suspensions were stained with SYBR Green I and propidium iodide which stain all of the cells and the non viable ones, respectively. RESULTS AND CONCLUSIONS: With the appropriate filter sets of both Bryte-HS (Bio-Rad, Hercules, CA) and FACScan (Becton Dickinson, San Jose, CA) flow cytometers, the measurement of separated green (SYBR Green I), orange-red (propidium iodide), and far red (RPE-Cy5) fluorescence was possible, allowing the enumeration of viable immunodetected bacteria. The entire protocol is completed in less than 3 h, offering numerous possibilities for rapid and precise analyses in sanitary, industrial, and environmental microbiology. 相似文献
5.
The relationship between cell mass and cell number dynamics for bacteria such as Escherichia coli depends on the cell cycle parameters C and D. Effects of plasmid copy number on these cell cycle parameters have been studied for Escherichia coli HB101 containing pMB1 plasmids propagated at different copy numbers ranging from 12 to 122. Determination of cell cycle and cell size parameters was accomplished using flow cytometry data on single-cell light scattering and DNA content frequency functions in conjunction with a mathematical model of cell population statistics. Two independent methods for estimating C and D intervals based on flow cytometry were developed and applied with essentially identical results. The presence of plasmids decreases the C and D periods, mean cell sizes, and initiation masses for chromosome replication by 14, 24, 38, and 18%, respectively, relative to corresponding values for plasmid-free host cells. Plasmid copy number has a negligible influence on these parameters, suggesting that host-plasmid inter actions which determine these properties are centered on the single plasmid selected for replication according to the random selection model established for ColE1-type plasmids. 相似文献
6.
Cell cycle kinetic analysis with flow cytometry in pea root meristem synchronized with aphidicolin 总被引:2,自引:0,他引:2
Sergio Sgorbati Elio Sparvoli Marisa Levi Maria Grazia Galli Sandra Citterio Donato Chiatante 《Physiologia plantarum》1991,81(4):507-512
Meristematic cells in pea root were synchronized after treatment with aphidicolin. Flow cytometric analysis of DNA content variations revealed a variety of information: ca 50% of the cells were synchronized in the first part of the S phase; kinetic studies of the S-phase traverse revealed an increase of the DNA synthesis rate from early to late S; some of the cells in the meristem were non-cycling, arrested in Gl (19%) and G2 (12%). The possibility of using such a synchronized system in cytogenetic and biomolecular studies is discussed. 相似文献
7.
8.
BACKGROUND: One of the most dramatic events during the course of the mammalian cell cycle is mitosis, when chromosomes condense and segregate, the nuclear envelope breaks down, and the cell divides into two daughter cells. Although cells undergoing mitosis are cytologically distinguishable from nonmitotic cells, few molecular markers are available to specifically identify mitotic cells, especially cells within different stages of mitosis. METHODS: We applied the flow cytometric method of Juan et al. (Cytometry 32:71-77, 1998) to obtain cells with various levels of the molecular markers cyclin B1 and phosphorylated histone H3; fluorescence microscopy was then used to identify sorted cells in different stages of mitosis. RESULTS: We observed the substantial enrichment of submitotic cell populations. CONCLUSIONS: This method represents an effective approach to obtain an enriched population of submitotic cells without the use of drug treatments or prior synchronization. 相似文献
9.
Yang Wu Gordon Zwartz Gabriel P Lopez Larry A Sklar Tione Buranda 《Cytometry. Part A》2005,67(1):37-44
BACKGROUND: Rapid-mix flow cytometry has emerged as a powerful tool for mechanistic analysis of ligand binding, cell response, and molecular assembly. Although progress has come from improving sample delivery capabilities, little attention has been paid to the volumetric requirements associated with precious biological reagents. METHODS: By using programmable syringes, valves, and other fluidic components, we created a modular, precisely regulated rapid-mix device for the delivery of small-volume samples to the flow cytometer. The device was tested using a bead-based assay in which the binding kinetics between native biotin and fluorescein biotin-bearing beads were characterized. RESULTS: Bead suspensions and reagents paired in 35- to 45-microl aliquots were efficiently mixed by the device and delivered to the flow cytometer. Kinetic data associated with the fluorescein biotin beads were analyzed and used to calibrate the performance characteristics of the device in terms of sample delivery and mixing efficiency. CONCLUSION: The rapid-mix device is capable of detecting subsecond kinetics of biological reactions using microliter volume of samples. Dimensions of the device have been minimized, and the quantitative aspects of sample delivery and analysis have been optimized. Further, the modular design has been optimized for adaptation to a variety of experimental protocols. 相似文献
10.
Telomere analysis by fluorescence in situ hybridization and flow cytometry. 总被引:10,自引:1,他引:10 下载免费PDF全文
M Hultdin E Grnlund K Norrback E Eriksson-Lindstrm T Just G Roos 《Nucleic acids research》1998,26(16):3651-3656
Determination of telomere length is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Fluorescence in situ hybridization (FISH) of telomere repeats has been used to calculate telomere length, a method called quantitative (Q)-FISH. We here present a quantitative flow cytometric approach, Q-FISHFCM, for evaluation of telomere length distribution in individual cells based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3probe and DNA staining with propidium iodide. A simple and rapid protocol with results within 30 h was developed giving high reproducibility. One important feature of the protocol was the use of an internal cell line control, giving an automatic compensation for potential differences in the hybridization steps. This protocol was tested successfully on cell lines and clinical samples from bone marrow, blood, lymph nodes and tonsils. A significant correlation was found between Southern blotting and Q-FISHFCMtelomere length values ( P = 0.002). The mean sub-telomeric DNA length of the tested cell lines and clinical samples was estimated to be 3.2 kbp. With the Q-FISHFCMmethod the fluorescence signal could be determined in different cell cycle phases, indicating that in human cells the vast majority of telomeric DNA is replicated early in S phase. 相似文献
11.
12.
Two- and three-color immunofluorescence using aminocoumarin, fluorescein, and phycoerythrin-labelled antibodies and single laser flow cytometry. 总被引:1,自引:0,他引:1
Antibodies coupled to 7-aminocoumarin (AMCA) emit a bright blue fluorescence under ultraviolet (UV) excitation and are therefore ideal for three-color immunofluorescence (IF) with fluorescein (FITC) and phycoerythrin (PE) labeled reagents; however, due to the different absorption spectra, the use of these fluorophores for multicolor flow-cytometric analysis requires a double light excitation source (e.g., two-laser system). We report a strategy which uses a single argon-ion laser to simultaneously excite AMCA, FITC, and PE, thus allowing the flow cytometric analysis of three immunological parameters. When the UV-visible argon-ion laser is fitted with an appropriate set of mirrors, the 35.1-363.8 nm (UV) and 488 nm wavelengths (accounting for 80 mW and 520 mW, respectively) are simultaneously generated; these lines can then be exactly focused on the same observation point by an achromatic cylindrical lens. A number of comparative analysis were performed with this instrumental set up to verify the sensitivity of AMCA IF and its possible application for multicolor immunophenotypic evaluation of blood cell subsets. When AMCA- and FITC-labeled antimouse Ig antibodies were assessed for their ability to detect limiting amounts of mouse monoclonal antibody bound to cells, the former was less sensitive than the latter. A number of factors, including differences in excitation energy (80 mW for AMCA and 520 mw for FITC) and extinction coefficients (1.9 x 10(4) for AMCA and 6 x 10(4) for FITC) could explain this result.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. 总被引:51,自引:49,他引:51 下载免费PDF全文
R I Amann B J Binder R J Olson S W Chisholm R Devereux D A Stahl 《Applied microbiology》1990,56(6):1919-1925
Fluorescent oligonucleotide hybridization probes were used to label bacterial cells for analysis by flow cytometry. The probes, complementary to short sequence elements within the 16S rRNA common to phylogenetically coherent assemblages of microorganisms, were labeled with tetramethylrhodamine and hybridized to suspensions of fixed cells. Flow cytometry was used to resolve individual target and nontarget bacteria (1 to 5 microns) via probe-conferred fluorescence. Target cells were quantified in an excess of nontarget cells. The intensity of fluorescence was increased additively by the combined use of two or three fluorescent probes complementary to different regions of the same 16S rRNA. 相似文献
14.
C B Bagwell J L Hudson G L Irvin 《The journal of histochemistry and cytochemistry》1979,27(1):293-296
A nonparametric statistical test for the analysis of flow cytometry derived histograms is presented. The method involves smoothing and translocation of data, area normalization, channel by channel determination of the mean and S.D., and use of Bayes' theorem for unknown histogram classification. With this statistical method, different sets of histograms from numerous biological systems can be compared. 相似文献
15.
J. Bussink N. H. A. Terry W. A. Brock 《In vitro cellular & developmental biology. Animal》1995,31(7):547-552
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination
of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation.
The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow
cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those
calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using
these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter
measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells
near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was
more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring
BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA
synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase,
when cells are undergoing dramatic shifts in biochemical activity. 相似文献
16.
Theresia M Westers Ilse Houtenbos Gerrit Jan Schuurhuis Gert J Ossenkoppele Arjan A van de Loosdrecht 《Cytometry. Part A》2005,66(1):71-77
BACKGROUND: The unique capacity of dendritic cells to present antigens to naive T cells is being increasingly utilized in cancer therapy. The efficacy of cell-based immunotherapy can be analyzed by determination of cytotoxic activity of T cells toward tumor cells in vitro. This study supplies a flow cytometric method to analyze T-cell-mediated cytotoxic activity toward heterogeneous leukemic cell populations at a single-cell level. METHODS: The fluorescent probe SYTO16 and the dead-cell dye 7-aminoactinomycine-D (7-AAD) were used to identify early and late stages of apoptosis in combination with leukemia cell-identifying markers. Determination of viable, apoptotic, and necrotic cells was performed by inclusion of fluorescent beads. RESULTS: In nine acute myeloid leukemia samples and three leukemic cell lines the use of SYTO16 next to the dead-cell marker 7-AAD significantly increased (P = 0.001) the sensitivity of the cytotoxicity assay as compared with single use of 7-AAD. Analysis of several effector-to-target ratios revealed the ability to determine dose-response effects. Enumeration of absolute numbers resulted in coefficients of variation of 4.1% and 8.4% for cell lines and leukemic samples, respectively. CONCLUSION: The presented flow cytometric cytotoxicity assay enables the study of T-cell-mediated apoptosis in a heterogenous leukemia population. 相似文献
17.
Xavier Pasteur Philippe Mtzeau Ivan Maubon Odile Sabido Hlagne Kiefer 《Molecular reproduction and development》1994,38(3):303-309
Flow cytometric studies of human sperm from fertile men display a constant and characteristic bimodal nonartifactual DNA pattern confirming the existence of two distinct populations. The main population is represented by a peak followed by a shoulder (“marginal population”). The appearance of this marginal population fluctuates with either freezing and thawing or with Percoll gradient centrifugation. We have analyzed both the main and marginal sperm populations by flow cytometry after cell sorting, laser scanning cytometry, light microscopic evaluation, and their sensitivity to DNase digestion. We have observed that the marginal population detected in fertile men represents a sperm group altered in the nuclear condensation, yielding unstable chromatin which appears more stainable with propidium iodide. © 1994 Wiley-Liss, Inc. 相似文献
18.
BACKGROUND: Use of synthetic short interfering RNAs (siRNAs) to study gene function has been limited by an inability to selectively analyze subsets of cells in complex populations, low and variable transfection efficiencies, and semiquantitative assays for measuring protein down-regulation. Intracellular flow cytometry can overcome these limitations by analyzing populations at the single-cell level in a high-throughput and quantitative fashion. Individual cells displaying a knockdown phenotype can be selectively interrogated for functional responses using multiparameter analysis. METHODS: Lck-specific siRNA was delivered into Jurkat T cells or peripheral blood mononuclear cells (PBMCs) to suppress endogenous Lck expression. Transfected cells were fluorescently stained for intracellular Lck and analyzed using multiparameter flow cytometry. The Lck(lo) Jurkat subpopulation was selectively analyzed for CD69 up-regulation and phospho-states of signaling proteins following T-cell receptor (TCR) stimulation. Surface expression levels of CD4 and CD8 on transfected CD3+ gated PBMCs were correlated with intracellular Lck levels. RESULTS: A subpopulation of Jurkat cells with reduced levels of Lck was clearly resolved from cells with wildtype levels of Lck. Both CD69 up-regulation and ZAP70 phosphorylation were suppressed in Lck(lo) cells when compared with those in Lck(hi) cells upon TCR stimulation. Knockdown of intracellular Lck in primary T lymphocytes reduced surface expression of CD4 in a dose-dependent manner. CONCLUSIONS: Multiparameter flow cytometry is a powerful technique for the quantitative analysis of siRNA-mediated protein knockdown in complex hard-to-transfect cell populations. 相似文献
19.
Slit-scan flow cytometry (SSFCM) was used to quantify the frequency of dicentric chromosomes in human lymphoblastoid cells following gamma irradiation. In this study, cultured human cells were irradiated with 0, 0.25, 0.5, 1.0, and 2.0 Gy of 0.66 MeV gamma-rays, cultured for an additional 11 h, and treated for 5 h with colcemid. Chromosomes were then isolated, stained with propidium iodide, and analyzed using SSFCM for total fluorescence and slit-scan profile. The frequency of chromosomes having DNA contents greater than once and less than twice the DNA content of the number 1 chromosome and producing trimodal profiles was determined at each dose. This frequency was used as an estimate of the relative dicentric chromosome frequency at that dose. The estimated dicentric chromosome frequency per cell, f(D), increased with dose, D, in a linear-quadratic manner according to the relation f(D) = 4.52 x 10(-5) + 5.72 x 10(-5) D + 1.19 x 10(-4) D2. 相似文献
20.
Double-beam autocompensation for fluorescence polarization measurements in flow cytometry. 下载免费PDF全文
The degree of depolarization of fluorescent light emitted from an organic dye, which is used as molecular probe, is a powerful tool in probing the microenvironment. By fluorescence depolarization the macromolecular structure can be investigated as well as the the mobility of the marker molecule itself or of the complex formed by the probe. Additional information such as energy transfer rates, donor-acceptor distances, and orientations are also measurable. These data are of particular interest if they can be measured from whole cells. Using flow cytometry, we can analyze a large number of cells with high statistical significance in a short period of time. We describe a newly developed double-beam epi-illumination arrangement for fluorescence polarization measurements that uses an autocompensation technique. This new technique permits the various depolarizing effects within the optical as well as the electronic components of the system to be continually compensated for on a cell by cell basis. Simultaneous measurements of other cell parameters for cell cycle analysis by total fluorescence intensity remains possible. The sensitivity of the system to measure polarization was determined as +/- 0.006 p (0 less than or equal to p less than or equal to 0.5 in isotropic media), which amounts to +/- 1.2% of the maximum p value. Polarization data for latex microspheres plotted in the histogram mode were measured with a standard deviation of 0.006, which proved the high resolution and the high performance of the system. 相似文献