首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. N. Sivak  U. Heber  D. A. Walker 《Planta》1985,163(3):419-423
Light-scattering, which can be taken as an indicator of the transthylakoid proton-gradient, and chlorophyll a fluorescence, have been followed simultaneously during re-illumination of spinach leaves at different energy fluence rates and carbon dioxide concentrations. The slow fluorescence transient (M peak), which has been associated with photosynthetic induction, was observed in air only at the lower fluence rates used. Data are presented that indicate that M peaks in chlorophyll fluorescence kinetics can only be observed if there is also a simultaneous transient in light-scattering and that these transients are observed when the dark period is relatively long, fluence rate relatively low, and CO2 concentration relatively high.The results are discussed in relation to the varying demands on ATP by carbon assimilation during induction of photosynthesis at different carbon dioxide concentrations and the manner in which these variations influence the quenching of chlorophyll a fluorescence.Abbreviation Chl chlorophyll  相似文献   

2.
Ivanov  B.  Kobayashi  Y.  Bukhov  N.G.  Heber  U. 《Photosynthesis research》1998,57(1):61-70
Photosystem I-dependent cyclic electron transport is shown to operate in intact spinach chloroplasts with oxaloacetate, but not with nitrite or methylviologen as electron acceptors. It is regulated by the redox state of the chloroplast NADP system. Inhibition of cyclic electron transport by antimycin A occurs immediately on addition of this antibiotic in the light. It is unrelated to a different function of antimycin A, inhibition of nonphotochemical quenching of chlorophyll fluorescence, which requires prior dissipation of the transthylakoid proton gradient before antimycin A can become effective.  相似文献   

3.
O2 evolution and chlorophyll a fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystic nidulans 1402–1 to stdy the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II–state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO2 fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state I transition.  相似文献   

4.
Here the mechanisms involved in excitation energy dissipation of Macrocystis pyrifera were characterized to explain the high nonphotochemical quenching of chlorophyll a (Chla) fluorescence (NPQ) capacity of this alga. We performed a comparative analysis of NPQ and xanthophyll cycle (XC) activity in blades collected at different depths. The responses of the blades to dithiothreitol (DTT) and to the uncoupler NH4Cl were also assayed. The degree of NPQ induction was related to the amount of zeaxanthin synthesized in high light. The inhibition of zeaxanthin synthesis with DTT blocked NPQ induction. A slow NPQ relaxation upon the addition of NH4Cl, which disrupts the transthylakoid proton gradient, was detected. The slow NPQ relaxation took place only in the presence of de-epoxidated XC pigments and was related to the epoxidation of zeaxanthin. These results indicate that in M. pyrifera, in contrast to higher plants, the transthylakoid proton gradient alone does not induce NPQ. The role of this gradient seems to be related only to the activation of the violaxanthin de-epoxidase enzyme.  相似文献   

5.
A brief reversible lowering of chlorophyll fluorescence yield (so called low-waves) immediately after application of a saturating light pulse in parallel with a short-time enhancement of the P700 oxidation level was observed in the green alga Haematococcus pluvialis. The phenomenon occurred in the steady-state time region of fluorescence induction kinetics under mild acidic conditions, and was eliminated by bicarbonate. Shortly after expression of low-waves, the photosynthetic oxygen evolution rate decreased and the non-photochemical chlorophyll fluorescence quenching component increased. The enhancement of the non-photochemical chlorophyll fluorescence quenching component was nigericin-sensitive indicating its dependence on the transthylakoid proton gradient. On the other hand, the formation of low-waves was not removed by the uncoupler. Only when bicarbonate was applied additionally, the reversible short-term decrease in fluorescence yield following each saturating light flash was abolished. Dimethyl-4-nitroso-aniline as an artificial electron acceptor of Photosystem I did not limit the brief drops in fluorescence. However, formate as a competitive inhibitor of bicarbonate binding in Photosystem II induced low-wave formation. Therefore, our results suggest that low-waves in chlorophyll fluorescence kinetics indicate deprivation of bicarbonate in the reaction centre of Photosystem II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The light-dependent quenching of 9-aminoacridine fluorescence was used to monitor the state of the transthylakoid proton gradient in illuminated intact chloroplasts in the presence or absence of external electron acceptors. The absence of appreciable light-dependent fluorescence quenching under anaerobic conditions indicated inhibition of coupled electron transport in the absence of external electron acceptors. Oxygen relieved this inhibition. However, when DCMU inhibited excessive reduction of the plastoquinone pool in the absence of oxygen, coupled cyclic electron transport supported the formation of a transthylakoid proton gradient even under anaerobiosis. This proton gradient collapsed in the presence of oxygen. Under aerobic conditions, and when KCN inhibited ribulose bisphosphate carboxylase and ascorbate peroxidase, fluorescence quenching indicated the formation of a transthylakoid proton gradient which was larger with oxygen in the Mehler reaction as electron acceptor than with methylviologen at similar rates of linear electron transport. Apparently, cyclic electron transport occured simultaneously with linear electron transport, when oxygen was available as electron acceptor, but not when methylviologen accepted electrons from Photosystem I. The ratio of cyclic to linear electron transport could be increased by low concentrations of DCMU. This shows that even under aerobic conditions cyclic electron transport is limited in isolated intact chloroplasts by excessive reduction of electron carriers. In fact, P700 in the reaction center of Photosystem I remained reduced in illuminated isolated chloroplasts under conditions which resulted in extensive oxidation of P700 in leaves. This shows that regulation of Photosystem II activity is less effective in isolated chloroplasts than in leaves. Assuming that a Q-cycle supports a H+/e ratio of 3 during slow linear electron transport, vectorial proton transport coupled to Photosystem I-dependent cyclic electron flow could be calculated. The highest calculated rate of Photosystem I-dependent proton transport, which was not yet light-saturated, was 330 mol protons (mg chlorophyll h)–1 in intact chloroplasts. If H+/e is not three but two proton transfer is not 330 but 220 mol (mg Chl H)–1. Differences in the regulation of cyclic electron transport in isolated chloroplasts and in leaves are discussed.  相似文献   

7.
Croxdale JG  Omasa K 《Plant physiology》1990,93(3):1078-1082
The development of photochemical activity and carbon assimilation in light-grown cucumber (Cucumis sativus L. cv Natsusairaku) leaves was studied to determine the pattern of acquisition and its relationship to leaf growth and expansion. Measurements of chlorophyll a fluorescence showed that leaves acquire photochemical function over a period of 6 or more days, and gas exchange studies showed increases in carbon assimilation over a parallel time period. As leaves expand and mature, they undergo a sequential, three-step series of changes in fluorescence response. The initial kinetics show the absence of wholly functional quenching mechanisms. Dynamic imaging of fluorescence kinetics showed that a temporal series of changes occurred within defined areas of individual developing leaves. The spatial acquisition of photochemical activity in leaves was basipetal as is their directional expansion, development of air spaces and stomata, and the cessation of imported carbon.  相似文献   

8.
We measured the Δ Ψ and ΔpH components of the transthylakoid proton motive force ( pmf ) in light-adapted, intact tobacco leaves in response to moderate heat. The Δ Ψ causes an electrochromic shift (ECS) in carotenoid absorbance spectra. The light–dark difference spectrum has a peak at 518 nm and the two components of the pmf were separated by following the ECS for 25 s after turning the light off. The ECS signal was deconvoluted by subtracting the effects of zeaxanthin formation (peak at 505 nm) and the qE-related absorbance changes (peak at 535 nm) from a signal measured at 520 nm. Heat reduced ΔpH while Δ Ψ slightly increased. Elevated temperature accelerated ECS decay kinetics likely reflecting heat-induced increases in proton conductance and ion movement. Energy-dependent quenching (qE) was reduced by heat. However, the reduction of qE was less than expected given the loss of ΔpH. Zeaxanthin did not increase with heat in light-adapted leaves but it was higher than would be predicted given the reduced ΔpH found at high temperature. The results indicate that moderate heat stress can have very large effects on thylakoid reactions.  相似文献   

9.
The time course of the responses of chlorophyll fluorescence in leaves of Aegopodium podagraria to changes in irradiance does not necessarily show the time constant of thylakoid energization at energy fluence rates below 10–25 W·m-2. In addition, other measures of thylakoid energization, such as lightscattering at 532 nm and the responses to saturating flashes, show that the related component disappears from these signals at low fluence rates, but not necessarily all together at the same fluence rate. However, this time constant still appears in the light-induced responses of the plasmalemma potential. This implies that the effect on the electrogenic proton pump in the plasmalemma is the most sensitive indicator of proton fluxes into the inner thylakoid space. These results are a further indication that energy-quenching is coupled ther indication that energy-quenching is coupled to transthylakoid proton fluxes via an intermediate, which is not active in Aegopodium podagraria at low irradiances.Abbreviations and symbols i time constant - F chlorophyll fluorescence - I constant component of irradiance - I v variable component of irradiance - S light-scattering - q E high-energy state quenching of chlorophyll fluorescence - T transmittance at 532 nm - V plasmalemma potential  相似文献   

10.
During a transition from aerobic to largely anaerobic conditionslight-saturated carbon assimilation of intact chloroplasts wasnot decreased although both the transthylakoid proton gradientand ATP levels declined. After a dark period under anaerobiosis,illumination failed to initiate carbon assimilation. ATP increasedonly transiently in the light and then returned to the darklevel. Under such conditions, the addition of electron acceptorssuch as oxygen, oxalacetate or nitrite resulted in the increaseof ATP levels and carbon assimilation was initiated. Assimilationcontinued under anaerobiosis in the presence of reduced protongradients and reduced ATP levels after electron acceptors addedin addition to bicarbonate were reduced. Cyclic electron transport was inhibited when anaerobiosis didnot permit linear electron transport. It was induced in thissituation by micromolar concentrations of oxygen or when, underanaerobiosis, DCMU decreased PSII activity. Oxygen inhibitedcyclic electron transport by draining electrons from the cyclicpathway only when electron donation from PSII was weak. Theobservations give evidence of the delicate redox balance requiredfor cyclic electron transport. Since H+/e=3 in linear electron transport, the observationsof effective carbon reduction under a decreased transthylakoidproton gradient and decreased levels of ATP are incompatiblewith H+/ATP=2 or 3. They are compatible with H+/ATP=4. (Received May 1, 1995; Accepted October 3, 1995)  相似文献   

11.
Simultaneous measurements of nonphotochemical quenching of chlorophyll fluorescence and absorbance changes in the 400- to 560-nm region have been made following illumination of dark-adapted leaves of the epiphytic bromeliad Guzmania monostachia. During the first illumination, an absorbance change at 505 nm occurred with a half-time of 45 s as the leaf zeaxanthin content rose to 14% of total leaf carotenoid. Selective light scattering at 535 nm occurred with a half-time of 30 s. During a second illumination, following a 5-min dark period, quenching and the 535-nm absorbance change occurred more rapidly, reaching a maximum extent within 30 s. Nonphotochemical quenching of chlorophyll fluorescence was found to be linearly correlated to the 535-nm absorbance change throughout. Examination of the spectra of chlorophyll fluorescence emission at 77 K for leaves sampled at intervals during this regime showed selective quenching in the light-harvesting complexes of photosystem II (LHCII). The quenching spectrum of the reversible component of quenching had a maximum at 700 nm, indicating quenching in aggregated LHCII, whereas the irreversible component represented a quenching of 680-nm fluorescence from unaggregated LHCII. It is suggested that this latter process, which is associated with the 505-nm absorbance change and zeaxanthin formation, is indicating a change in state of the LHCII complexes that is necessary to amplify or activate reversible pH-dependent energy dissipation, which is monitored by the 535-nm absorbance change. Both of the major forms of nonphotochemical energy dissipation in vivo are therefore part of the same physiological photoprotective process and both result from alterations in the LHCII system.  相似文献   

12.
The low-wave phenomenon, i.e., the transient drop of yield of modulated chlorophyll fluorescence shortly after application of a pulse of saturating light, was investigated in intact leaves of tobacco and Camellia by measuring fluorescence, CO(2) assimilation and absorption at 830 nm simultaneously. Limitations on linear electron flow, due to low electron acceptor levels that were induced by low CO(2), induced the low waves of chlorophyll fluorescence. Low-wave amplitudes obtained under different CO(2) concentrations and photon-flux densities yielded single-peak curves when plotted as functions of fluorescence parameters such as PhiPS II (quantum yield of Photosystem II) and qN (coefficient of non-photochemical quenching), suggesting that low-wave formation depends on the redox state of the electron transport chain. Low waves paralleled redox changes of P700, the reaction center of Photosystem I (PS I), and an additional electron flow through PS I was detected during the application of saturating pulses that induced low-waves. It is suggested that low waves of chlorophyll fluorescence are induced by increased non-photochemical quenching, as a result of the formation of a trans-thylakoid proton gradient due to cyclic electron flow around PS I.  相似文献   

13.
The environmental temperature is one of the mainfactors affecting plant growth and development. Insummer, plants are frequently influenced by hightemperature. In recent years, global temperature wasremarkably elevated accompanied with the climaticchanges,…  相似文献   

14.
After incubation at 42°C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (ΔndhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of ΔndhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42°C for 6 h, the photochemical activity declined more markedly in ΔndhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (ΔpH), while the consumption of ΔpH was highly inhibited in ΔndhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra ΔpH, thus reducing the photooxidative damage.  相似文献   

15.
Abstract A close, immediate and precise relationship between chlorophyll a fluorescence and photosynthetic carbon assimilation in vivo is demonstrated. The examples discussed include kinetics displayed during dark to light transitions plus oscillations and transients observed during changes in the gas phase surrounding the leaf. Remaining uncertainties surrounding the relationship between chlorophyll fluorescence and photosynthesis are attributed to the underlying complexity of the regulatory mechanisms involved. Examples are also given that show how multiple simultaneous measurements of different aspects of the photosynthetic process may contribute to the resolution of these uncertainties. The practical relevance of these matters is also discussed, particularly in relation to the limitations of the photosynthetic process and to the use of chlorophyll fluorescence as a diagnostic probe of chemical and genetic manipulation and stress.  相似文献   

16.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

17.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

18.
张春艳  庞肖杰 《植物学报》2021,56(5):594-604
光谱技术已广泛应用于光合研究领域,如光吸收信号P515和P700氧化还原动力学以及叶绿素荧光等,可快速、准确地检测植物的光合活性。P515信号广泛存在于高等植物和藻类中,是类囊体膜上的色素分子吸收光能后,其吸收光谱发生位移造成。利用光诱导的P515快速和慢速动力学,可检测PSI和PSII反应中心的比值、ATP合酶的质子...  相似文献   

19.
Esculin, a pH-sensitive fluorescent dye, was used to indicate light-dependent pH changes in leaves of Spinacia oleracea L. and Pelargonium zonale L. Shortly after its introduction into the leaves via the transpiration stream, esculin was localized mainly in the symplasm. An increase in its blue fluorescence on illumination with red actinic light indicated that the cytosolic pH had increased. A similar light-dependent alkalinization was seen when the green fluorescence of pyranine was used to monitor changes in the cytosolic pH. After esculin had been transferred into the vacuoles, a light-dependent vacuolar acidification was indicated by a decrease in its blue fluorescence. Since the pK of esculin is close to neutrality, it is suitable as an indicator of proton transport into vacuoles provided the vacuolar sap is only moderately acidic. In leaf cells with very acidic vacuoles, esculin therefore responds only to cytosolic pH changes as long as it remains in the cytosol. The observations made with esculin after it had entered the vacuoles confirmed earlier conclusions on light-dependent proton transport into the vacuoles of mesophyll cells. Previous measurements had been made with 5-carboxy-2,7-dichlorofluoresceine (CDCF), which has a pK of 4.8. In contrast to esculin, CDCF can, in principle, record pH changes in very acidic vacuoles. However, earlier conclusions made on the basis of observed CDCF fluorescence are now recognized to have no unambiguous basis because new measurements, reported here, show that CDCF fluorescence is influenced not only by pH changes but also by changes in light scattering. The latter are, like pH changes, light-dependent and originate from the thylakoid system of chloroplasts. They indicate both the formation of a large transthylakoid proton gradient and the dissipation of excess light energy as heat. Decreased green fluorescence of leaves which had been fed CDCF may therefore, depending on conditions, indicate vacuolar acidification or the dissipation of excess light energy absorbed by the pigment system of chloroplasts, or both. Pyranine fluorescence was found to be much less influenced by light scattering than CDCF fluorescence.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluoresceine - P700 primary donor of PS I - PFD photon flux density - QA primary quinone acceptor of PS II - QP, QN photochemical, non-photochemical quenching of chlorophyll fluorescence, respectively This work was supported by the Deutsche Forschungsgemeinschaft within the framework of the research of the Sonderforschungsbereich 251 of the University of Würzburg. We are grateful to Drs. U. Schreiber and K.-J. Dietz and to Mrs. B. Hollenbach (all from our Institute) for discussions.  相似文献   

20.
Calophyllum brasiliense Camb. (Clusiaceae) is a tree of swampy areas of the coastal “Restinga” in southeastern Brazil (a coastal sand-plain scrub and forest formation). To elucidate possible adaptive strategies that enable this species to occupy areas subjected to seasonal or perennial waterlogging, growth characters such as shoot height, biomass production, leaf expansion, new leaf development, stem diameter, carbon dioxide assimilation rate, stomatal conductance, chlorophyll concentration and fluorescence were studied in controls and plants flooded for up to 150 days. Although flooded plants kept incorporating carbon all through the experiment, their assimilation rate and growth rate were lower than control, non-flooded plants. Injuries such as leaf senescence and abscision were not observed but some flooded plants showed signs of leaf chlorosis. In view of its capacity to maintain carbon assimilation and growth during the treatment, C. brasiliense can be classified as flood-tolerant tree. Flooding induced hypertrophy of lenticels, increased stem diameter and development of adventitious roots. These characteristics of C. brasiliense are most probably responsible for its survival and success in naturally seasonally flooded areas, inhospitable environments for most tree species. Reduction in total chlorophyll concentration was probably the main cause of reduced carbon dioxide assimilation rate. Based on the results we recommend C. brasiliense for rehabilitation of native vegetation in flood-prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号