首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨葛根素(puerarin,Pue)预处理抗心肌缺血/复灌(ischemia/reperfusion,I/R)损伤是否与线粒体渗透性转换孔和/或线粒体ATP敏感性钾通道有关。方法:采用离体大鼠心脏Leangendorff灌流方法,全心停灌30min,复灌120min复制I/R模型。测定心室力学指标和复灌各时间点冠脉流出液中乳酸脱氢酶(LDH)含量。实验结束测定心肌组织formazan量的变化。结果:与单纯I/R组相比,Pue(0.24mmol/L,5min)预处理明显提高心肌细胞的formazan含量,降低复灌期间冠脉流出液中LDH含量,明显促进左室发展压、左心室内压最大上升和下降速率、心率与发展压乘积和左室舒张末压力的恢复,缓解冠脉流量的减少。线粒体渗透性转换孔开放剂苍术苷(20μmol/L。复灌前给药20min)和线粒体ATP敏感性钾通道抑制剂5-羟基癸酸(100μmol/L,缺血前给药20min)能明显减弱Pue的保护作用。结论:在大鼠离体心脏灌流模型上,Pue预处理具有抗心脏缺血/复灌损伤的作用,这种保护作用可能与其抑制线粒体渗透性转换孔的开放和促进线粒体ATP敏感性钾通道的开放有关。  相似文献   

2.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

3.
Effect of different concentration of K+ in perfusion fluid ([K+]) (5.9 mM, 3.6 mM, 2.38 mM) and the heart temperatures of 20 degrees C and below on the rat heart rate in the Langendorf preparations, were examined in conditions of retrograde perfusion with a modified Krebs-Henseleit buffer at constant perfusion volume. The lowering of [K+] diminished the temperature/heart rate ratio and depressed the heart standstill temperature from 12.3 +/- 0.6 degrees C at [K+] 5.9 mM (n = 12) to 6.7 +/- 0.6 degrees C at [K+] 3.6 mM (n = 5) and to 2.24 +/- 0.40 degrees C at [K+] 2.38 mM (n = 5). Temperature of the cold heart standstill had the liner relationship to Ig[K+]. Change the perfusion fluid with 5.9 mM K+ after heart cold standstill by the perfusion fluid with 3.6 mM K+ restored the heart beats to the rate of 40-50 min-1 in some experiments. The second heart standstill was at the mean temperature 3.6 degrees C lower than the first one.  相似文献   

4.
The effect of ischemia on myocardial noradrenaline concentration and endogenous noradrenaline output was studied in the isolated perfused rat heart. Following a 15-min stabilization period, regional ischemia was produced by coronary artery ligation. After 60 min of ischemia, noradrenaline concentrations were significantly reduced in the interventricular septum and left ventricle but not in the right ventricle. The reduction in tissue noradrenaline concentration was not prevented when the 60-min ischemia was replaced by a 10-min ischemia followed by a 50-min perfusion. No modification in noradrenaline output was observed during a 60-min ischemia. In contrast, reperfusion was accompanied by a washout of noradrenaline in the coronary effluent, corresponding to only 2% of the amount lost by the tissue. The effect of monoamine oxidase inhibition during the whole ischemic period was studied by perfusing the preparation with pargyline starting 10 min before the artery ligation. Although the administration of pargyline did not alter the noradrenaline output, it did prevent a reduction in myocardial noradrenaline concentration. It was concluded that monoamine oxidase may contribute to the elimination of the noradrenaline lost by the cardiac tissue during ischemia.  相似文献   

5.
6.
Lavanchy  N.  Grably  S.  Garnier  A.  Rossi  A. 《Molecular and cellular biochemistry》1996,160(1):273-282
The role played by glycogenolysis in the ischemic heart has been recently put into question because it is suspected that a slowing down of this process could be beneficial for the tolerance of the myocardium to ischemia. The role of the intracellular effectors that control the rate of glycogenolysis has therefore regained interest. We aimed to understand the role played by those intracellular effectors which are directly related to the energy balance of the heart. To this end, we review some of the previously published data on this subject and we present new data obtained from P-31 and C-13 NMR spectroscopic measurement on isolated rat heart. Two conditions of ischemia were studied: 15 min global no-flow and 25 min low-flow ischemia. The hearts were isolated either from control animals or from rats pre-treated with isoproterenol (5 mg.kg–1 b.w. i.p.) 1 h before the perfusion in order to C-13 label glycogen stores. Our main results are as follows: (1) the biochemically determined glycogenolysis rate during the early phase of ischemia (up to 10–15 min) was larger in no-flow ischemia than in low-flow conditions for both groups, (2) direct measurement of the glycogenolysis rate, as determined by C-13 NMR, after labelling of the glycogen pool in the hearts from isoproterenol-treated rats, confirms the estimations from the biochemical data, (3) glycogenolysis was slower in the hearts from pre-treated animals than in control hearts for both conditions of ischemia, (4) the total activity of glycogen phosphorylase (a + b) increased, by 50%, after 5 min no-flow ischemia, whereas it decreased by 42% after the same time of low-flow ischemia. However, the ratio phosphorylase a/a + b was not altered, whatever the conditions, (5) the concentration of inorganic phosphate (Pi) increased sharply during the first minutes of ischemia, to values above 8–10 mM, under all conditions studied. The rate of increase was larger during no-flow ischemia than during low-flow ischemia. The concentration of Pi was thereafter higher in controls than in the hearts from isoproterenol-treated animals.The calculated cytosolic concentration of free 5 AMP increased sharply at the onset of ischemia, reaching in a few minutes values above 30 M in controls and significantly lower values, around 15 M, in the hearts from isoproterenol-treated rats. (6) The hearts from isoproterenol-treated rats displayed a reduced intracellular acidosis, when compared to controls, under both conditions of ischemia.We conclude that the intracellular effectors, mainly free AMP, play an essential role in the control of glycogenolysis via allosteric control of phosphorylase b activity. The alteration in the concentration of free Pi, the substrate of both forms of phosphorylase, can also be considered as determinant in the control of the rate of glycogenolysis.The attenuation of ischemia-induced intracellular acidosis in the hearts from isoproterenol-treated rats could be a consequence of a reduced glycogenolytic rate and is likely to be related to a better resumption of the mechanical function on reperfusion.  相似文献   

7.
The effect of ischemic preconditioning on the free-radical state of isolated rat myocardium fixed by rapid freezing at the 25th min of normothermic total ischemia and the 3rd min of reperfusion was studied by the EPR method. It was shown that EPR spectra registered at -40 degrees C consist of two free-radical signals: of the semireduced forms of ubiquinone and flavine coynzymes. It was found that during ischemia and at the beginning of reperfusion, the preconditioning results in a narrowing of the spectra (as compared with control) due to an increase in the narrow ubisemiquinone EPR signal portion, and a decrease in the total concentration of free-radical centers: by 16% in the case of ischemia, and 23% in the case of reperfusion. It was concluded that in both cases the changes were due to a decrease in the concentration of myocardial flavosemiquinones as a result of ischemic preconditioning. We registered the microvawe power saturation curves for these two stages, which corresponded to control and ischemic preconditioning. In the case of ischemia these dependences had similar shapes; however, in the case of reperfusion they differ from each other due to changes in the relative intensities of the EPR signals from ubisemiquinone and flavosemiquinones in the integral myocardial free-radical spectra.  相似文献   

8.
Acute diabetes modulates response to ischemia in isolated rat heart   总被引:1,自引:0,他引:1  
Role of protein kinase C (PKC) isotypes in the regulation of neutrophil function are not clearly known. In the present study we purified the -PKC and -PKC isotypes from human neutrophil. Both the isotypes are immunoreactive only to their respective antibodies. -PKC was further confirmed by RT-PCR using specific primer. Co-factor requirements for both the kinases were found to be different when DG and ceramide were used as second messenger. Selective substrate specificities were determined for both and -PKC using isotype specific pseudosubstrates viz., [Ser25]PKC [19-31] and [Ser119]PKC[113-130] respectively. Endogenous protein phosphorylation by purified -PKC and -PKC showed their functional differences in neutrophil. -PKC phosphorylated 13, 15, 19, 33, 36, 47, 80 and 92 kDa proteins and -PKC phosphorylated 19, 22, 42, 47, 75 and 87 kDa proteins, only exception was the phosphorylation of 47 kDa protein which had been phosphorylated by both the kinases. Differences in phosphorylation between -PKC and -PKC clearly indicate the selective role for these PKC isotypes in the activation sequences of neutrophil.  相似文献   

9.
目的:研究κ-阿片受体特异性激动剂U50,488H对心肌缺血后电耦联特性的影响,并探讨其作用的可能机制。方法:采用雄性SD大鼠心脏Langendorff离体灌流模型和四电极法,观察U50,488H对全心停灌缺血期间心肌整体阻抗和电脱耦联参数(电脱耦联时间、平台时间、电脱耦联最大速率和阻抗倍数)的影响。采用免疫组化染色法检测U50,488H对左心室心肌细胞缝隙连接结构蛋白Cx43的影响,并同时观察U50,488H特异阻断剂nor-BNI(5×10-6mol/L)和PKC抑制剂chelerythrine(3×10-6mol/L)预处理对U50,488H作用的影响。结果:U50,488H可浓度依赖地延迟电脱耦联时间和平台时间,降低电脱耦联最大速率;nor-BNI或chelerythrine预处理均可明显减弱U50,488H对心肌缺血后电耦联特性的作用;与空白对照组比较,单纯缺血组心肌闰盘处Cx43蛋白显著减少,U50,488H处理可明显增加缺血心肌闰盘处Cx43蛋白含量;nor-BNI和chelerythrine预处理均可明显减弱U50,488H对心肌Cx43蛋白表达的作用。结论:κ-阿片受体激动剂U50,488H明显延迟缺血诱导的心肌电脱耦联,其作用涉及κ-阿片受体-PKC途径,其作用靶点可能为心肌细胞缝隙连接蛋白Cx43。  相似文献   

10.
11.
Interventions that stimulate carbohydrate oxidation appear to be beneficial in the setting of myocardial ischemia or infarction. However, the mechanisms underlying this protective effect have not been defined, in part because of our limited understanding of substrate utilization under ischemic conditions. Therefore, we used (1)H and (13)C NMR spectroscopy to investigate substrate oxidation and glycolytic rates in a global low-flow model of myocardial ischemia. Isolated male Sprague-Dawley rat hearts were perfused for 30 min under conditions of normal flow (control) and low-flow ischemia (LFI, 0.3 ml/min) with insulin and (13)C-labeled lactate, pyruvate, palmitate, and glucose at concentrations representative of the physiological fed state. Despite a approximately 50-fold reduction in substrate delivery and oxygen consumption, oxidation of all exogenous substrates plus glycogen occurred during LFI. Oxidative metabolism accounted for 97% of total calculated ATP production in the control group and approximately 30% in the LFI group. For controls, lactate oxidation was the major source of ATP; however, in LFI, this shifted to a combination of oxidative and nonoxidative glycogen metabolism. Interestingly, in the LFI group, anaplerosis relative to citrate synthase increased sevenfold compared with controls. These results demonstrate the importance of oxidative energy metabolism for ATP production, even during very-low-flow ischemia. We believe that the approach described here will be valuable for future investigations into the underlying mechanisms related to the protective effect of increasing cardiac carbohydrate utilization and may ultimately lead to identification of new therapeutic targets for treatment of myocardial ischemia.  相似文献   

12.
Catecholamines or ischemia may increase myocardial glucose uptake by an increase in intracellular calcium. We tested the hypothesis that increasing or decreasing extracellular calcium supply would change glucose uptake. Hearts were perfused for 60 min at a physiological workload with Krebs-Henseleit buffer containing glucose (5 mM) and oleate (0.4 mM; bound to 1% BSA). Calcium concentration was 2.5 mM. In group A (control; n = 12), insulin (1 mU/ml) was added at 30 min. In Group B (n = 7), the calcium concentration was increased to 5.0 and 7.5 mM at 20 min and 40 min, respectively. In Group C (n = 7), verapamil was added at 20 min (0.25 M) and 40 min (1.0 M) to decrease calcium influx. In group D (n = 7), EDTA was added at 20 min (0.5 mM) and at 40 min (1.5 mM) to decrease the free extracellular calcium. Glucose uptake was measured by 3H2O production from [2-3H]glucose and cardiac work was measured simultaneously. Cardiac power in group B was 8.24 ± 0.60 mW at 2.5 mM calcium, 9.45 ± 0.50 mW at 5 mM calcium and 7.99 ± 0.99 mW at 7.5 mM calcium (n.s.). The addition of verapamil decreased contractile function in a dose-dependent manner (8.50 ± 0.74 vs. 3.11 ± 0.84 vs. 1.48 ± 0.39 mW, p < 0.01) suggesting that verapamil decreased cytosolic calcium concentration. A similar dose-dependent reduction in contractile performance was observed in the EDTA group (8.44 ± 0.81 vs. 7.42 ± 0.96 vs. 4.03 ± 1.32 mW, p < 0.01). Glucose uptake was 1.35 ± 0.11 mol/min/g dry weight under control conditions. Glucose uptake increased threefold with the addition of insulin. Increasing extracellular [Ca2+] did not affect glucose uptake. Decreasing Ca2+ availability showed a trend towards a decrease in glucose uptake (n.s.), which was minor compared to the decrease in contractile function. We conclude that extracellular calcium does not regulate glucose uptake in the isolated working rat heart in the presence of glucose and fatty acids as substrates. The trend of decreased glucose uptake when calcium supply was limited may be due to dramatically reduced energy demand and not directly due to changes in calcium.  相似文献   

13.
The changes in the regulation of at mitochondrial NADP-isocitrate dehydrogenase (NADP-ICDH) in a rat heart during have been analysed. Increase of enzyme activity in the cytosol and mitochondria of the heart ischemia was detected. Catalytic properties of the mitochondrial NADP-ICDH at norm and pathology have been compared on homogeneous enzyme preparations. Enzyme from the normoxic and ischemic heart showed the same electrophoretical mobility and molecular mass. Enzyme isolated from the ischemic heart mitochondria demonstrated higher activation energy and lower thermal stability. NADP-isocitrate dehydrogenase at the normoxic and ischemic conditions exhibited different Km for substrates and regulatory behaviour in relation to ATP, ADP, 2-oxoglutarate, citrate, malate, reduced and oxidised glutathione. The inhibitory effect of the Fe2+ and H2O2 mixture associated with the generation of hydroxyl radicals was lower in the ischemic enzyme. We hypothesise that the specific features of regulation behaviour of NADP-ICDH from the ischemic tissues permits the enzyme to supply NADPH to the glutathione reductase/glutathione peroxidase system.  相似文献   

14.
15.
The effect of catecholamine-depleting pretreatments, reserpine, and 6-hydroxydopamine (6-OH-DA) on left ventricular pressure (LVP) and the inotropic response to graded doses of ouabain (up to 300 mug/0.05 ml) was studied in isolated perfused rat and guinea-pig hearts. In rats, reserpine and 6-OH-DA depleted the cardiac content of catecholamine, but did not increase initial LVP and did not reduce the inotropic response to the highest dose of ouabain. It is concluded that in isolated rat hearts, these catecholamine-depleting pretreatments nearly abolish the inotropic response to ouabain, and this effect appears to be mediated mainly through an increase in initial LVP. The reason why catecholamine depletion failed to increase initial LVP in guinea pigs remains unexplained.  相似文献   

16.
17.
18.
Studies with the isolated perfused working rat heart were carried out to investigate factors that may enable the heart to recover after periods of anoxia. It was found that the presence of glucose in the perfusion fluid during anoxia was essential for complete post-anoxic recovery and the presence of a high concentration of K(+) increased not only the rate of recovery but also the final extent of recovery. In an attempt to clarify the roles played by glucose and K(+) in aiding the survival and recovery of the anoxic myocardium the concentrations of parameters associated with energy liberation and anaerobic glycolysis (ATP, ADP, AMP, P(i), creatine phosphate, glycogen and lactate) were measured in the presence and absence of glucose during the anoxic phase. Determinations of these parameters were carried out during the working aerobic control period, the anoxic period (K(+) arrest) and the recovery period. The results demonstrated that glucose acted as an energy source during anoxia and thus maintained myocardial concentrations of high-energy phosphates, particularly ATP. These studies have also shown a direct relationship between the ability of the heart to recover and the concentration of myocardial ATP at the time of reoxygenation.  相似文献   

19.
Schepkin, V. D., I. O. Choy, and T. F. Budinger. Sodiumalterations in isolated rat heart during cardioplegic arrest. J. Appl. Physiol. 81(6):2696-2702, 1996.Triple-quantum-filtered (TQF) Na nuclearmagnetic resonance (NMR) without chemical shift reagent is used toinvestigate Na derangement in isolated crystalloid perfused rat heartsduring St. Thomas cardioplegic (CP) arrest. Theextracellular Na contribution to the NMR TQF signal of a rat heart isfound to be 73 ± 5%, as determined by wash-out experiments atdifferent moments of ischemia and reperfusion. With the use of thiscontribution factor, the estimated intracellular Na([Na+]i)TQF signal is 222 ± 13% of preischemic level after 40 min of CParrest and 30 min of reperfusion, and the heart rate pressure productrecovery is 71 ± 8%. These parameters aresignificantly better than for stop-flow ischemia: 340 ± 20% and 6 ± 3%, respectively. At 37°C, the initial delay of 15 min in[Na+]igrowth occurs during CP arrest along with reduced growth later (~4.0%/min) in comparison with stop-flow ischemia (~6.7%/min). The hypothermia (21°C, 40 min) for the stop-flow ischemia and CPdramatically decreases the[Na+]igain with the highest heart recovery for CP (~100%). These studiesconfirm the enhanced sensitivity of TQF NMR to[Na+]iand demonstrate the potential of NMR without chemical shift reagent tomonitor[Na+]iderangements.

  相似文献   

20.
Changes in ventricular fibrillation (VF) organization occurring after the onset of global ischemia are relevant to defibrillation and survival but remain poorly understood. We hypothesized that ischemia-specific dynamic instability of the action potential (AP) causes a loss of spatiotemporal periodicity of propagation and broadening of the electrocardiogram (ECG) frequency spectrum during VF in the ischemic myocardium. We recorded voltage-sensitive fluorescence of di-4-ANEPPS (anterior left ventricle, 35 x 35 mm, 64 x 64 pixels) and the volume-conducted ECG in six blood-perfused hearts during 10 min of VF and global ischemia. We used coefficient of variation (CV) to estimate variability of AP amplitude, AP duration, and diastolic interval (CV-APA, CV-APD, and CV-DI, respectively). We computed excitation median frequency (Median_F), spectral width of the AP and ECG (SpW-AP and SpW-ECG, respectively), wavebreak incidence (WBI), and recurrence of propagation direction (RPD). We found three distinct phases of local VF dynamics: "relatively periodic" (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号