首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial β-ketoacyl-ACP reductase (FabG) and the β-ketoacyl reductase domain in mammalian fatty acid synthase (FAS) have the same function and both are rendered as the novel targets for drugs. Herein we developed a convenient method, using an available compound ethyl acetoacetate (EAA) as the substitutive substrate, to measure their activities by monitoring decrease of NADPH absorbance at 340 nm. In addition to the result, ethyl 3-hydroxybutyrate (EHB) was detected by HPLC analysis in the reaction system, indicating that EAA worked effectively as the substrate of FabG and FAS since its β-keto group was reduced. Then, the detailed kinetic characteristics, such as optimal ionic strength, pH value and temperature, and kinetic parameters, for FabG and FAS with this substitutive substrate were determined. The Km and kcat values of FabG obtained for EAA were 127 mM and 0.30 s− 1, while those of this enzyme for NADPH were 10.0 μM and 0.59 s− 1, respectively. The corresponding Km and kcat values of FAS were 126 mM and 4.63 s− 1 for EAA; 8.7 μM and 4.09 s− 1 for NADPH. Additionally, the inhibitory kinetics of FabG and FAS, by a known inhibitor EGCG, was also studied.  相似文献   

2.
A newly isolated enantioselective esterase from Pseudomonas fluorescens KCTC 1767, which is currently considered as a biocatalyst for the production of a commercially valuable (S)-ketoprofen, has revealed a low structural and thermal stability. In order to enhance the stability, directed evolution was attempted on this enantioselective esterase by successive steps of an error prone and staggered extension PCR. After the second round of evolution, the best mutant 6–52 with enhanced thermal stability was selected and analyzed. DNA sequence analyses of 6–52 revealed that the three amino acid residues (L120P, I208V, and T249A) were changed and the mutation L120P was presumed as a structurally important residue due to its presence in all positive variants. The purified mutant 6–52, when incubated at 50 and 55 °C for 2 h, remained its activity over 30 and 10%, respectively, whereas there were no detectable activities in wild-type enzyme. The analysis of 6–52 in the presence of 15% ethanol showed 1.8-fold increase in the activity, compared to that of wild-type enzyme. The Km and Vmax values of 6–52 were estimated to be slightly increased, leading to 1.2-fold-higher the catalytic efficacy kcat/Km than that of wild-type enzyme. Additionally, the mutant 6–52 was more resistant to high substrate concentrations than that of wild-type enzyme.  相似文献   

3.
This article reports the purification of a renin-like enzyme (an aspartyl protease) from head parts of the leech Theromyzon tessulatum. After four steps of purification including gel permeation and anion exchange chromatographies followed by reversed-phase HPLC, this enzyme was purified to homogeneity. The renin-like enzyme (of 32 kDa) hydrolyses at neutral pH and at 37°C, the Leu10-Leu11 bond of synthetic porcine angiotensinogen tetradecapeptide yielding the angiotensin I and the Leu11-Val12-Tyr13-Ser14 peptide as products, with a specific activity of 1.35 pmol AI/min/mg (Km 22 μM; Kcat 2.7). The hydrolysis of angiotensinogen is inhibitable at 90% by pepstatin A (IC50 = 4.6 μM), consistent with a renin activity. This is the first biochemical evidence of renin-like enzyme in invertebrates.  相似文献   

4.
天然来源的多糖底物上常存在乙酰基取代,特异性的乙酰酯酶能够切割这些底物上的乙酰基,从而有利于聚糖底物的进一步降解.对Bacillus sp. N16-5甘露聚糖利用基因簇上编码的乙酰酯酶AesA进行了基因克隆和异源表达,并对其酶学性质进行了研究.aesA基因长957bp,编码318个氨基酸,属于碳水化合物酯酶第7家族.AesA对4-甲基伞形酮乙酸酯(4-methylumbelliferyl-acetate)表现出较好的催化活性,金属离子Fe3+,Fe2+,Mn2+及Cu2+对AesA活性均有不同程度的促进作用.AesA与甘露聚糖酶ManA对乙酰化的甘露聚糖底物具有显著的协同作用.此项研究有助于理解嗜碱芽孢杆菌Bacillus sp.N16-5对甘露聚糖的水解机制,并且在甘露聚糖降解中具有潜在的应用前景.  相似文献   

5.
A thermostable laccase was isolated from an unidentified fungal isolate [Enz. Microb. Technol. 33 (2003) 212], and tentatively named UD4. This work indicates that the enzyme has unique properties other than its thermostability. Investigation into the kinetic parameters of the thermostable laccase yielded an unusually high affinity for ABTS as a substrate (low Km) when compared with available published data for other laccase isozymes. The specificity constant (kcat/Km) was found to be considerably higher than laccase from other sources and is comparable to “white” laccase from Pleurotus ostreatus (POXA1). However, POXA1 isozyme exhibits a large turnover number (kcat) that contributes to its high specificity constant whereas the high specificity constant for UD4 laccase is achieved by having a high substrate affinity. The UD4 thermostable laccase, like most other laccases, is able to utilize guaiacol as a substrate, whereas POXA1 is unable to oxidize guaiacol, indicating a broader substrate range for the thermostable laccase from UD4. The thermostable laccase is inhibited by sodium azide through non-competitive inhibition, and by thioglycolic acid and hydroxylamine through competitive inhibition. The high specificity constant, substrate affinity and broader substrate range of the thermostable laccase from UD4 indicates that it is a highly favourable candidate enzyme for industrial application.  相似文献   

6.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

7.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   

8.
Thermolysin (E.C. 3.4.24.4) shows a remarkable increase in catalytic activity at elevated salt concentrations or hydrostatic pressures. Salt effected Kcat, only, whilst the effect of pressure was related to both Kcat, and Km. The turnover, derived from kcat/Km(V), of the hydrolysis of an N-acyldipeptide amide substrate was scarcely affected by addition of salt. These results were interpreted in terms of the stabilization of increased (or exposed) charges at the transition state of the reaction.  相似文献   

9.
Tripeptidyl peptidase-I (TPP-I) is a lysosomal peptidase which cleaves tripeptides from the N-terminus of peptides. The function of the enzyme is unclear but its importance is demonstrated by the fact that mutations in TPP-I are responsible for late infantile neuronal ceroid lipofuscinosis, a lethal lysosomal storage disease. As a step towards identifying its natural substrates, we have used a series of synthetic peptides, based on angiotensin-II, to explore the effects of peptide chain length and the effects of amino acid substitutions at the P1 and P1′ positions on the rate of catalysis. With the exception of angiotensin-(1–8) (angiotensin-II), which is a relatively poor substrate for TPP-I, the rate of catalysis increases with increasing chain length. Kcat/Km values increase 50-fold between angiotensin-(1–5) and angiotensin-(1–14). TPP-I shows little specificity for the nature of the amino acids in the P1 and P1′ positions, Kcat/Km values varying only 5-fold for a range of substitutions. However, Pro or Lys in the P1 position and Pro in the P1′ positions are incompatible with TPP-I activity. These observations suggest that TPP-I is a non-specific, but essential, peptidase involved in the latter stages of lysosomal protein degradation.  相似文献   

10.
Directed evolution was used to enhance the catalytic activity of E. coli alkaline phosphatase (EAP). Through two rounds of error-prone PCR and one round of DNA shuffling followed by a rapid, sensitive screening procedure, several improved variants were obtained. Their enzymatic kinetic properties, thermal stabilities and possible mechanism for the improvement were investigated. In 1.0 M Tris buffer, the specific activity of the most active EAP variant S2163 was 1500 units/mg protein, showing it to be 3.6 times more active than the D101S parent enzyme and ∼40 times more active than the wild-type EAP. At the same time, the Km value of the S2163 variant decreased to 1491 μM from the 2384 μM of the D101S. As a result, the kcat/Km ratio of this variant showed a 5.8-fold enhancement over that of D101S parent enzyme. Three activating amino acid substitutions, K167R, G180S and S374C, which were located far away from the center of the catalytic pocket, were identified by sequencing the genes encoding evolved enzymes. Possible explanations for the improvement of activity were analyzed.  相似文献   

11.
A novel subtilase from common bean leaves   总被引:3,自引:0,他引:3  
Popovic T  Puizdar V  Brzin J 《FEBS letters》2002,530(1-3):163-168
We describe the isolation of a protease from common bean leaves grown in the field. On the basis of its biochemical properties it was classified as serine proteinase belonging to the subtilisin clan. Isoelectric focusing resulted in a single band at pH 4.6, and SDS–PAGE in a single band corresponding to Mr 72 kDa. The proteinase activity is maximal at pH 9.9 and shows high stability in the alkaline region. The relative activities of the proteinase for eight different synthetic substrates were determined. The requirement for Arg in the P1 position appeared obligatory. kcat/Km values indicate that, for highest catalytic efficiency, a basic amino acid is also required in the P2 position, presenting a motif typical of the cleavage site for the kexin family of subtilases. The sequence of the 17 N-terminal amino acids of this proteinase shows similarity to those of other plant subtilases, sharing the highest number of identical amino acids with proteinase C1 from soybean seedling cotyledons and a cucumisin-like proteinase from white gourd (Benincasa hispida).  相似文献   

12.
Antifungal compounds in the culture filtrate from Bacillus subtilis NSRS 89-24 that inhibited the growth of Pyricularia grisea and Rhizoctonia solani were mainly heat stable as the filter sterilized culture filtrate showed higher activity than an autoclaved one. The heat stable and labile components were due to an antibiotic and a β-1,3-glucanase, respectively. This β-1,3-glucanase was purified and characterized. Glucanase activity in the culture medium of B. subtilis NSRS 89-24 was inducible in the presence of 0.3% chitin, reaching a maximum on day 5. After purification, activity was associated with a protein of molecular mass of approximately 95.5 kDa by both gel filtration and native PAGE. Two major bands of Mr 64.6 and 32.4 kDa were revealed by SDS–PAGE. The enzyme had a Km of 0.9 mg/ml, and Vmax of 0.11 U, the optimal pH was 6.5–9.5 and was stable up to 50 °C. Both the pure enzyme and the antibiotic extract from the culture filtrate of the B. subtilis separately inhibited R. solani and P. grisea with MIC values of 12.5 and 6.25 mU/ml and 3.13 and 1.56 μg/ml, respectively. The glucanase enzyme in combination with the antibiotic showed a strong synergistic inhibitory effect on the hyphal growth of both fungi.  相似文献   

13.
Phytases catalyse the hydrolytic degradation of phytic acid and its salts and are added to monogastric animal feed to ameliorate the negative environmental and nutritional consequences of dietary phytate. Screening of 58 microbial strains identified a phytase produced by Rhizopus oligosporus ATCC 22959 that displayed physicochemical characteristics likely to render it of potential industrial interest. The 124 kDa enzyme was purified to homogeneity by anion exchange chromatography, gel filtration and chromatofocusing. The monomeric glycosylated enzyme (30.5% total carbohydrate) displayed maximum activity at 65 °C and pH 5.0. It displayed a Km of 10.4 μM, a Vmax of 1.32 nmol s−1 and a Kcat of 51 s−1. It is acid tolerant, retaining full activity after incubation at pH 2.0 for 6 h. HPLC analysis indicated the enzyme’s ability to almost completely degrade phytate. Substrate specificity studies showed its ability to dephosphorylate several additional phosphorylated molecules. Activity was unaffected or moderately stimulated by a range of metal ions with only Ca2+ exerting a modest (13%) inhibitory effect. The enzyme is significantly more thermostable at 80 °C and retains a significantly greater proportion of maximal activity at physiological temperatures than do two commercial phytases tested for comparative purposes. This may render it of industrial interest.  相似文献   

14.
The isoflavones daidzein, genistein, biochanin A and formononetin inhibit potently and preferentially the γ-isozymes of mammalian alcohol dehydrogenase (γγ-ADH), the only ADH isozyme that catalyzes the oxidation of 3β-hydroxysteroids. Based on these results, we proposed that these isoflavones might also act on other enzymes involved in 3β-hydroxysteroid metabolism. Recently, we showed that they indeed are potent inhibitors of a bacterial β-hydroxysteroid dehydrogenase (β-HSD). To extend this finding to the mammalian systems, we hereby purified, characterized and studied the effects of isoflavones and structurally related compounds on, a bovine adrenal 3β-hydroxysteroid dehydrogenase (3β-HSD). This enzyme catalyzes the oxidation of 3β-hydroxysteroids but not 3-, 11β- or 17β-hydroxysteroids. The same enzyme also catalyzes 5-ene-4-ene isomerization, converting 5-pregnen 3, 20-dione to progesterone. The Km values of its dehydrogenase activity determined for a list of 3β-hydroxysteroid substrates are similar (1 to 2 μM) and that of its isomerase activity, determined with 5-pregnen 3, 20-dione as a substrate, is 10 μM. The kcat value determined for its isomerase activity (18.2 min−1) is also higher than that for its dehydrogenase activity (1.4–2.4 min−1). A survey of more than 30 isoflavones and structurally related compounds revealed that daidzein, genistein, biochanin A and formononetin inhibit both the dehydrogenase and isomerase activity of this enzyme. Inhibition is potent and concentration dependent. IC50 values determined for these compounds range from 0.4 to 11 μM, within the plasma and urine concentration ranges of daidzein and genistein of individuals on vegetarian diet or semi-vegetarian diet. These results suggest that dietary isoflavones may exert their biological effects by inhibiting the action of 3β-HSD, a key enzyme of neurosteroid and/or steroid hormone biosynthesis.  相似文献   

15.
The enantiomeric ratio: origin, determination and prediction   总被引:7,自引:0,他引:7  
The enantiomeric ratio E =(kcatR/KmR) (kcatS/KmS) offers a concise representation of the enantioselective properties of an enzyme in reactions that involve chiral compounds. Both as a measure of the intrinsic selectivity of the catalyst, and as a parameter to model the performance of enzymatic processes for the production of enantiopure fine-chemicals, its merits have been well-recognized.

Several methods for the determination of E exist. The scope and limitations of these methods are evaluated in terms of accuracy and feasibility. There appears to be no single method that is both reliable and readily applicable in all cases. Complementary methods, however, are available.

The outstanding characteristics of the enantiomeric ratio as a quantitative measure of the effects of physical and chemical conditions on the intrinsic enantioselectivity of enzymes are presented in terms of the difference in Gibbs energies of the diastereomeric enzyme-substrate transition states. The prospects of molecular modeling strategies for the prediction of E are discussed.  相似文献   


16.
The crucial role of Arg-94 in 3-isopropylmalate (IPM) dehydrogenase from Thermus thermophilus HB8 was elucidated by replacing the residue to lysine with site-directed mutagenesis. The kcat value of the R94K mutant enzyme for IPM was significantly reduced to 1/170 compared with that of native enzyme, whereas the Km for IPM was not much changed. It appeared that the major role of Arg-94 in exerting the enzymatic activity is not for the substrate recognition, but for the reaction catalysis, in such a way that Arg-94 facilitates stabilization of the transition-state in the decarboxylation step.  相似文献   

17.
A Bacillus niacini strain (EM001) producing an ofloxacin ester-enantioselective esterase was isolated from the soil samples collected near Taejon, Korea. The cloned gene showed that the esterase EM001 composed of 495 amino acids corresponding to a relative molecular weight (Mr) of 54,098 kDa. Based on the Mr and the protein sequence, the esterase EM001 was similar to p-nitrobenzyl esterase from Bacillus subtilis with an identity of 41.8%. The optimum temperature and pH of the purified His-tagged enzyme were 45 °C and 9.0, respectively. The purified esterase EM001 hydrolyzed preferably (R)-ofloxacin propyl ester than (S)-form ester at the initial reaction phase with an eeP of 67% until the conversion rate become up to 35%.  相似文献   

18.
Extracellular thermostable lipase produced by the thermophilic Bacillus stearothermophilus MC 7 was purified to 19.25-fold with 10.2% recovery. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be 62 500 Da. The purified enzyme expressed maximum activity at 75–80 °C and its half life was 30 min at 70 °C. The Km and Vmax were calculated to be, respectively, 0.33 mM and 188 μM min−1 mg−1 with p-nitrophenyl palmitate (pNPP) as a substrate. Enzyme activity was inhibited by divalent ions of heavy metals, thiol and serine inhibitors, whereas calcium ion stimulated its activity. The most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose. The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well.  相似文献   

19.
In the presence of rutin as sole carbon source, Penicillium decumbens produces two intracellular β-glucosidases named GI and GII, with molecular masses of 56,000 and 460,000 Da, respectively. The two proteins have been purified to homogeneity. GI and GII composed of two and four equal sub-units, respectively and displayed optimal activity at pH 7.0 and temperature 65–75 °C. Both β-glucosidases were competitively inhibited by glucose and glucono-δ-lactone. GI and GII exhibited broad substrate specificity, since they hydrolyzed a range of (1,3)-, (1,4)- and (1,6)-β-glucosides as well as aryl β-glucosides. Determination of kcat/Km revealed that GII hydrolyzed 3–8 times more efficiently the above-mentioned substrates. The ability of GI and GII to deglycosylate various flavonoid glycosides was also investigated. Both enzymes were active against flavonoids glycosylated at the 7 position but GII hydrolyzed them 5 times more efficiently than GI. Of the flavanols tested, both enzymes were incapable of hydrolyzing quercetrin and kaempferol-3-glucoside. The main difference between GI and GII as far as the hydrolysis of flavanols is concerned, was the ability of GII to hydrolyze the quercetin-3-glucoside.  相似文献   

20.
The conformational and functional changes of cholesterol esterase (CE) and isolipase (CRL) from Candida rugosa after exposure to a micellar interface and subsequent extraction to a fresh buffer were studied. These two enzymes were activated by interaction with the micellar interface of a sulphosuccinic acid bis[2-ethylhexyl] ester/n-heptane/water system. For the hydrolysis of p-nitrophenyl butyrate ester in water, the catalytic efficiencies of CE and CRL were both improved because on activation their kcat values increased from 378 to 465 and from 250 to 680 s−1, respectively, while their Km values decreased from 5.08 × 10−5 to 3.23 × 10−5 and from 2.28 × 10−4 to 1.14 × 10−4 M, respectively. After exposure to the micelles, CE showed a marked increase in its -helical content from 28 to 49%, but only limited changes were detected when CRL was exposed. These proteins exhibit similar capacities for increasing their -helical content in a helicogenic medium. In acetonitrile/water mixtures, CRL exhibits a partial decrease in the extent of its secondary structure, while CE exhibits an increase in its -helical content. The fact that this medium of reduced polarity permits one to simulate the effect of the AOT reverse micelles on the conformation of CE (increased helicity) but not their effect on the structure of CRL (decreased helicity) supports the hypothesis that only CE interacts to a significant extent with the apolar side of the micellar interface. After exposure to micelles of octyl-β-glucopyranoside, CE (but not CRL) showed a 10% increase in its -helical content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号