首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of medial vestibular nucleus neurons projecting to the contralateral abducens nucleus (premotor vestibular neurons) has been recorded during spontaneous and vestibular induced eye movements in the alert cat. Recorded neurons were identified by their antidromic activation from the abducens nucleus and by the post-synaptic field potential induced in this nucleus. The activity of identified medial vestibular neurons increased significantly with horizontal eye position and velocity toward the contralateral side, and decreased abruptly during ipsilateral saccades. The activity of these neurons was also related to head velocity toward the ipsilateral side. The functional role and origin of eye position and velocity signals present in these vestibular neurons are discussed.  相似文献   

2.
Secondary vestibular neurons exhibit a wide variety of responses to a head movement, with the response of each secondary neuron depending upon the particular primary afferents converging onto it. A single head movement is thereby registered in a distributed manner. This paper focuses on implications of afferent convergence to the relative timing of secondary neuron response modulation during rotational movements about a combination of horizontal axes. In particular, the neurons of interest are those that receive input from afferents innervating the vertical semicircular canals, and the movements of interest are those that have a sinusoidal component about one vertical canal axis and a sinusoidal component about another, approximately orthogonal, vertical canal axis. Under these conditions, the present research shows that it is possible for two or more secondary neurons to have a different relative timing of response (i.e., different relative phase of the periodic modulation in firing rate) for different head movements, and for the neurons to switch their order of response for different movements. For particular head movements, those same neurons will respond in phase. From the point of view of the nervous system, the relative timing of neuron responses may tell which movement is taking place, but with certain restrictions as discussed in the present paper. Shown here is that, among those head movements for which the two components of rotation may be at any phase relative to one another and have any relative amplitude, an in-phase response of just two neurons cannot identify a single motion. Two neurons that respond in phase for one motion must respond in phase for an entire range of motions; all motions in that range are thus response-equivalent, in the sense that the pair of neurons cannot distinguish between the two motions. On the other hand, an in-phase response of three neurons can identify a single motion, for certain patterns of primary afferent convergence. Received: 16 December 1996 / Accepted in revised form: 3 April 1998  相似文献   

3.
The short-latency vestibular evoked potential (VsEP) induced by angular acceleration impulses (maximal amplitude 30,000 deg/sec2, rise time 2–3 msec) was recorded by skin electrodes in intact cats after various surgical and pharmacological procedures. The normal VsEP consists of 5–8 waves, several microvolts in amplitude, during the first 10 msec. The latency of the first wave (P1) is about 2 msec with respect to the start of head acceleration. The first and the second waves (P1 and P2) were shown to originate from the vestibular nerve and nucleus, respectively.The VsEP disappears permanently after bilateral labyrinthectomy, excision of the 8th nerves, or administration of large doses of gentamicin. Temporary disappearance is caused by anoxia induced for a brief period of time or injection of lidocaine (4%) into the vestibular nerve or into the inner ear after contralateral labyrinthectomy.The VsEPs in the intact cat are similar whether clockwise or counterclockwise stimuli are used and are not affected by changing the position of the head. Unilaterally labyrinthectomized animals, however, show asymmetric response whereby excitatory stimulation of any of the intact semicircular canals evokes prominent P1 and P2 waves which are absent with inhibitory stimulation.The rate and input-output intensity functions of the VsEP are described. The threshold of the VsEP was found to be 1000–1500 deg/sec2.In addition to the neurogenic waves, 2 other potentials appear occasionally in the response: (1) large-amplitude and longer-duration waves with latencies of 8–20 msec, which are of myogenic origin, and (2) smaller waves with shorter latency which probably represent vestibular microphonics and generator potentials. Extracellular recordings of the responses of single second-order neurons in the vestibular nuclei to the same acceleration impulses confirmed that the kinetic vestibular neurons can respond to these stimuli with a latency as short as 3.5 msec.This method for inducing and recording VsEPs has proved to be a powerful tool for the evaluation of vestibular function in experimental animal models.  相似文献   

4.
Slipping and tripping contribute to a large number of falls and fall-related injuries. While the vestibular system is known to contribute to balance and fall prevention, it is unclear whether it contributes to detecting slip or trip onset. Therefore, the purpose of this study was to investigate the effects of slipping and tripping on head acceleration during walking. This information would help determine whether individuals with vestibular dysfunction are likely to be at a greater risk of falls due to slipping or tripping, and would inform the potential development of assistive devices providing augmented sensory feedback for vestibular dysfunction. Twelve young men were exposed to an unexpected slip or trip. Head acceleration was measured and transformed to an approximate location of the vestibular system. Peak linear acceleration in anterior, posterior, rightward, leftward, superior, and inferior directions were compared between slipping, tripping, and walking. Compared to walking, peak accelerations were up to 4.68 m/s2 higher after slipping, and up to 10.64 m/s2 higher after tripping. Head acceleration first deviated from walking 100-150ms after slip onset and 0-50ms after trip onset. The temporal characteristics of head acceleration support a possible contribution of the vestibular system to detecting trip onset, but not slip onset. Head acceleration after slipping and tripping also appeared to be sufficiently large to contribute to the balance recovery response.  相似文献   

5.
In experiments on decerebrate guinea pigs, the impulse activity of neurons of the lateral vestibular nucleus evoked by tilting the animal about the longitudinal axis was investigated under conditions of spontaneous and mesencephalon stimulation-evoked locomotor activity. In most investigated neurons, locomotor activity led to changes in their responses to adequate vestibular stimulation. The dominant reaction was intensification of such responses, which was observed in almost all vestibulospinal neurons and in 2/3 of cells not having descending projections. Responses were suppressed only in 1/4 of the neurons not projecting to the spinal cord. The changes in the evoked responses had an amplitude character; the lag of the changes in the discharge frequency relative to the acceleration that caused them was constant. It is suggested that intensification of dynamic reactions of vestibular neurons during locomotion provides maintenance of the animal's equilibrium during movements in space by various gaits and along different trajectories.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 541–549, September–October, 1991.  相似文献   

6.
7.
This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.  相似文献   

8.
A three-dimensional model is proposed that accounts for a number of phenomena attributed to the otoliths. It is constructed by extending and modifying a model of vestibular velocity storage. It is proposed that the otolith information about the orientation of the head to gravity changes the time constant of vestibular responses by modulating the gain of the velocity storage feedback loop. It is further proposed that the otolith signals, such as those that generate L-nystagmus (linear acceleration induced nystagmus), are partially coupled to the vestibular system via the velocity storage integrator. The combination of these two hypotheses suggests that a vestibular neural mechanism exists that performs correlation in the mathematical sense which is multiplication followed by integration. The multiplication is performed by the otolith modulation of the velocity storage feedback loop gain and the integration is performed by the velocity storage mechanism itself. Correlation allows calculation of the degree to which two signals are related and in this context provides a simple method of determining head angular velocity from the components of linear acceleration induced by off-vertical axis rotation. Correlation accounts for the otolith supplementation of the VOR and the sustained nystagmus generated by off-vertical axis rotation. The model also predicts the cross-coupling of horizontal and vertical optokinetic afternystagmus that occurs in head-lateral positions and the reported effects of tilt on vestibular responses.  相似文献   

9.
The spatial transformation of semicircular canal signals to extraocular motor signals was studied by recording abducens nerve responses in grass and water frogs. Both species have similar vestibular canal coordinates but dissimilar orientations of their optic axes. Before sinusoidal oscillation in darkness the static head position was systematically altered to determine the planes of head oscillation in pitch and roll associated with minimal abducens nerve responses. Measured data and known canal plane vectors were used to calculate the abducens response vector in canal coordinates. The abducens vector deviated from the horizontal canal plane vector in grass frogs by 15° and in water frogs by 34° but was aligned with the pulling direction of the lateral rectus muscle in each of the two species. Lesion experiments demonstrated the importance of convergent inputs from the contralateral horizontal and anterior semicircular canals for the orientation of the abducens response vector. Thus, the orientation of the optic axis and the pulling directions of extraocular muscles are taken into account by the central organization of vestibulo-ocular reflexes. Horizontal and vertical canal signals are combined species-specifically to transform the spatial coordinates of sensory signals into appropriate extraocular motor signals. Accepted: 16 November 1997  相似文献   

10.
Responses of vasomotor neurons of the cat medulla to electrical stimulation of the depressor nerve and of mixed nerves of the limbs and to adequate stimulation of the vestibular apparatus were investigated. Evoked unit activity was demonstrated as groups of action potentials followed by inhibition of spontaneous activity. Three types of unit responses to stimulation of the depressor nerve and somatic afferent fibers and changes in unit activity in response to vestibular stimulation are described. The features distinguishing the convergence of afferent impulses on vasomotor neurons are discussed.Institute of Medico-Biological Problems, Ministry of Health of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 460–467, September–October, 1973.  相似文献   

11.
Effects of active head movements about the pitch, roll, or yaw axes on horizontal optokinetic afternystagmas (OKAN) were examined in 16 subjects to test the hypothesis that otolith organ mediated activity induced by a change in head position can couple to the horizontal velocity storage in humans. Active head movements about the pitch axis, forwards or backwards, produced significant OKAN suppression. Pitch forward head movements exerted the strongest effect. Active head movements about the roll axis towards the right also produced OKAN suppression but only if the tilted position was sustained. No suppression was observed following sustained yaw. However, an unsustained yaw left movement after rightward drum rotation significantly enhanced OKAN. Sustained head movement trials did not significantly alter subsequent control trials. In contrast, unsustained movements about the pitch axis, which involve more complex interactions, exerted long-term effects on subsequent control trials. We conclude that otolith organ mediated activity arising from pitch or roll head movements couples to the horizontal velocity storage in humans, thereby suppressing ongoing OKAN. Activity arising from the horizontal canals during an unsustained yaw movement (observed mainly with yaw left), following drum rotation in a direction contralateral to the movement, may also couple to the velocity storage, resulting in increased activity instead of suppression.  相似文献   

12.
Most naturally occurring displacements of the head in space, due to either an external perturbation of the body or a self-generated, volitional head movement, apply both linear and angular forces to the head. The vestibular system detects linear and angular accelerations of the head separately, but the succeeding control of gaze and posture often relies upon the combined processing of linear and angular motion information. Thus, the output of a secondary neuron may reflect the linear, the angular, or both components of the head motion. Although the vestibular system is typically studied in terms of separate responses to linear and angular acceleration of the head, many secondary and higher-order neurons in the vestibular system do, in fact, receive information from both sets of motion sensors. The present paper develops methods to analyze responses of neurons that receive both types of information, and focuses on responses to sinusoidal motions composed of a linear and an angular component. We show that each neuron has a preferred motion, but a single neuron cannot code for a single motion. However, a pair of neurons can code for a motion by the relative phases of firing-rate modulation. In this way, information about motion is enhanced by neurons combining information about linear and angular motion. Received: 5 November 1998 / Accepted in revised form: 19 March 1999  相似文献   

13.
The ability to orient and navigate through the terrestrial environment represents a computational challenge common to all vertebrates. It arises because motion sensors in the inner ear, the otolith organs, and the semicircular canals transduce self-motion in an egocentric reference frame. As a result, vestibular afferent information reaching the brain is inappropriate for coding our own motion and orientation relative to the outside world. Here we show that cerebellar cortical neuron activity in vermal lobules 9 and 10 reflects the critical computations of transforming head-centered vestibular afferent information into earth-referenced self-motion and spatial orientation signals. Unlike vestibular and deep cerebellar nuclei neurons, where a mixture of responses was observed, Purkinje cells represent a homogeneous population that encodes inertial motion. They carry the earth-horizontal component of a spatially transformed and temporally integrated rotation signal from the semicircular canals, which is critical for computing head attitude, thus isolating inertial linear accelerations during navigation.  相似文献   

14.
Summary The well known optomotor yaw torque response in flies is part of a 3-dimensional system. Optomotor responses around the longitudinal and transversal body axes (roll and pitch) with strinkingly similar properties to the optomotor yaw response are described here forDrosophila melanogaster. Stimulated by visual motion from a striped drum rotating around an axis aligned with the measuring axis, a fly responds with torque of the same polarity as that of the rotation of the pattern. In this stimulus situation the optomotor responses for yaw, pitch and roll torque have about the same amplitudes and dynamic properties (Fig. 2). Pronounced negative responses are measured with periodic gratings of low pattern wavelengths due to geometrical interference (Fig. 3). The responses depend upon the contrast frequency rather than the angular velocity of the pattern (Fig. 4). Like the optomotor yaw response, roll and pitch responses can be elicited by small field motion in most parts of the visual field; only for motion below and behind the fly roll and pitch responses have low sensitivity.The mutantoptomotor-blind H31 (omb H31) in which the giant neurones of the lobula plate are missing or severely reduced, is impaired in all 3 optomotor torque responses (Fig. 5) whereas other visual responses like the optomotor lift/thrust response and the landing response (elicited by horizontal front-to-back motion) are not affected (Heisenberg et al. 1978).We propose that the lobula plate giant neurons mediate optomotor torque responses and that the VS-cells in particular are involved in roll and pitch but not in lift/thrust control. This hypothesis accommodates various electrophysiological and anatomical observations about these neurons in large flies.Abbreviation EMD elementary movement detector  相似文献   

15.
Researchers studied the convergence of the vertical posterior semicircular canal (PC), saccular nerves (SAC), utricular nerves (UT), and horizontal semicircular canal nerves (HC) on single vestibular neurons. The vestibular neurons were categorized by their innervating targets. Vestibular neurons were classified as vestibulospinal proper neurons (VS), vestibulo-ocular proper neurons (VO), vestibulo-oculo-spinal neurons sending axon collaterals to the extraocular motoneuron pools and spinal cord (VOS), and vestibular nucleus neurons without axons to the oculomotor nuclei or the spinal cord (V). Results indicate that the percentage of convergence of VS neurons was higher that that of neurons sending axons to the oculomotor nuclei (VO and VOS). They conclude that the convergence of canal and otolith inputs likely contributes mainly to vestibulospinal reflexes by sending inputs to the neck and other muscles during head inclination, which creates the combined stimuli of angular and linear acceleration.  相似文献   

16.
Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.  相似文献   

17.
Single unit responses in nuclei of the vestibular complex to stimulation of the labyrinths and of proprioceptive and autonomic afferents were investigated. Different types of unit responses were obtained to stimulation, including evoked activity consisting of a group of action potentials followed by inhibition of the spike discharge. Unit activity in the vestibular nuclei was shown to depend on extralabyrinthine stimulation. In response to adequate stimulation of the labyrinths by tilting the head, the role of receptors of muscles and joints in the neck was distinguished. The question of the somatotopic organization of the vestibular nuclei and convergence of various afferent flows on neurons giving rise to the vestibulospinal tract is discussed.Institute of Medico-Biological Problems, Ministry of Health of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 507–513, September–October, 1976.  相似文献   

18.
Extracellular recordings were made during vestibular stimulation from an in vitro turtle brain stem in which the temporal bones remained attached. Under visual control, microelectrodes were slowly advanced into the vestibular nucleus (VN) while we rotated the brain and searched for a single isolated unit whose spike activity was modulated by the lateral semicircular canals. In some experiments, responses were shown to be due to stimulation of the lateral canals, either by positioning the brains in forward or backward pitch during horizontal rotation or by plugging the vertical canals with wax. VN neurons usually had low spontaneous activity and rectified sinusoidal responses to sinusoidal stimulation. Spike response histograms were averaged from many stimulus cycles and were then fit to a sine function. The fitted phase and amplitude parameters were plotted relative to stimulus frequency and amplitude. The sample of VN cells were quite heterogeneous. Using stimuli at 1 Hz, however, each cell's response phase was weakly correlated with the slope of the plots of response amplitude versus frequency so that a cell could be categorized as sensitive to velocity or acceleration and as sensitive to ipsiversive or contraversive rotation, depending on whether its phase was near −180°, −90°, 0°, or 90°, and whether the gain exceeded 0.4 spikes/s per °/s. The properties of these VN cells suggest that there is substantial complexity in the vestibular responses at this first site of central vestibular processing. These data are compared to that of other species where such vestibular signals play an important role in oculomotor and spinal reflexes. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 99–177, 1997  相似文献   

19.
The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.  相似文献   

20.
Anatomical studies have demonstrated that the vestibular nuclei project to nucleus tractus solitarius (NTS), but little is known about the effects of vestibular inputs on NTS neuronal activity. Furthermore, lesions of NTS abolish vomiting elicited by a variety of different triggering mechanisms, including vestibular stimulation, suggesting that emetic inputs may converge on the same NTS neurons. As such, an emetic stimulus that activates gastrointestinal (GI) receptors could alter the responses of NTS neurons to vestibular inputs. In the present study, we examined in decerebrate cats the responses of NTS neurons to rotations of the body in vertical planes before and after the intragastric administration of the emetic compound copper sulfate. The activity of more than one-third of NTS neurons was modulated by vertical vestibular stimulation, with most of the responsive cells having their firing rate altered by rotations in the head-up or head-down directions. These responses were aligned with head position in space, as opposed to the velocity of head movements. The activity of NTS neurons with baroreceptor, pulmonary, and GI inputs could be modulated by vertical plane rotations. However, injection of copper sulfate into the stomach did not alter the responses to vestibular stimulation of NTS neurons that received GI inputs, suggesting that the stimuli did not have additive effects. These findings show that the detection and processing of visceral inputs by NTS neurons can be altered in accordance with the direction of ongoing movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号