首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A high proportion of peptide transmitters and peptide hormones terminate their peptide chain in a C-terminal amide group which is essential for their biological activity. The specificity of an enzyme that catalyses the formation of the amide was investigated with the aid of synthetic peptide substrates. With peptides containing l-amino acids the enzyme exhibited an essential requirement for glycine in the C-terminal position; amidation did not take place with peptides that had leucine, alanine, glutamic acid, lysine or N-methylglycine at the C-terminus and a peptide extended by the attachment of lysine to the C-terminal glycine did not act as a substrate. Amidation did occur with a peptide containing C-terminal D-alanine but no reaction was detected with peptides having C-terminal, D-serine or D-leucine. In tripeptides with a neutral amino acid in the penultimate position, amidation, took place readily but the reaction was slower when this position was occupied by an acidic or a basic residue. A series of overlapping peptides with C-terminal glycine, based on partial sequences of calcitonin, underwent amidation at similar rates, indicating that the amidating enzyme recognizes only a limited sequence at the C-terminus of its substrates. The results provide evidence that the amidating enzyme has a highly compact substrate binding site.  相似文献   

3.
A peptide containing 2 seryl residues, (1)Leu(2)Ser(3)Tyr(4)Arg(5)Aly(6)Tyr(7)Ser(8)Leu, was chemically synthesized and used as a substrate for phosphorylase kinase and cyclic AMP-dependent protein kinase. The sequence, TryArgGlyTyr, makes up a beta turn in the native protein. Phosphorylase kinase was found to phosphorylate specifically seryl residue2 and protein kinase seryl residue7. Km and Vmax values were obtained and compared with natural substrates. The differences in the specificity of the two enzymes might be explained by a different requirement for organized structure. As a working hypothesis, it is suggested the results could be explained if the two enzymes interacted with seryl residues at different sides of a beta turn.  相似文献   

4.
Synthetic peptides have been used to investigate the site specificity of highly purified virus induced protein kinase, a recently discovered protein kinase isolated from cells infected with alpha-herpesviruses. The enzyme from cells infected with pseudorabies virus can catalyse the phosphorylation of both seryl and threonyl residues in peptides that contain several arginyl residues on the amino-terminal side of the target residue. At least two arginyl residues are required, and the best substrates examined contain four to six such residues. Virus induced protein kinase differs in site specificity from protein kinase C in being unable to phosphorylate peptides in which multiple arginyl residues are on the carboxyl-terminal side of the target residue, or to phosphorylate peptides in which the arginyl residues are replaced by ornithyl residues. Virus induced protein kinase from cells infected with herpes simplex virus type I had similar substrate preferences to virus induced protein kinase from cells infected with pseudorabies virus. Although virus induced protein kinase and the cyclic AMP-dependent protein kinase have several peptide substrates in common, their relative preferences for these (as indicated by Km values) were found to be very different.  相似文献   

5.
Protein kinase C, purified to near homogeneity from the brain, has been tested toward a variety of synthetic peptide substrates including different phosphorylatable residues. While it proved totally inactive toward the tyrosyl peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly, as well as toward several more or less acidic seryl peptides, it phosphorylates with a Ca2+/phospholipid-dependent mechanism, at seryl and/or threonyl residues, many basic peptides, some of which are also good substrates for cAMP-dependent protein kinase (A-kinase). Among the peptides tested, however, the best substrate for protein kinase C, with kinetic constants comparable to those of histones, is the nonapeptide Gly-Ser-Arg6-Tyr, which is not a substrate for A-kinase. Moreover, although the peptide Pro-Arg5-Ser-Ser-Arg-Pro-Val-Arg is a good substrate for both kinases, its derivative with ornitines replacing arginines is phosphorylated only by protein kinase C. Some typical substrates of A-kinase on the other hand, like the peptides Phe-Arg2-Leu-Ser-Ile-Ser-Thr-Glu-Ser and Arg2-Ala-Ser-Val-Ala, are phosphorylated by protein kinase C rather slowly and with unfavourable kinetic constants. It is concluded that, while both protein kinase C and A-kinase need basic groups close to the phosphorylatable residues, their primary structure determinants are quite distinct.  相似文献   

6.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

7.
The pseudorabies virus protein kinase prefers model substrates containing arginyl residues on the amino-terminal side of a target seryl or threonyl residue. We have defined this substrate specificity more precisely in experiments using a new series of synthetic model peptides. When the number of arginyl residues was varied from two to four in substrates of the type RnASVA it was found that peptides with four arginyl residues constituted the best substrates, although the most marked decrease in Km was seen on increasing the number of arginyl residues from two to three. The effect of varying the number of 'spacer' alanyl residues from zero to three was investigated in peptides of the type R4AmSVA, and the peptide with one alanyl residue was found to be the best substrate, making R4X the optimal amino-terminal environment for this enzyme. A similar substrate specificity was observed with the herpes simplex type 1 protein kinase. Protein kinase C was found to have a quite similar substrate preference to the viral enzyme as far as the number and position of the amino-terminal basic residues was concerned; but, unlike the viral protein kinase, it also requires carboxy-terminal basic residues in optimal peptide substrates, and can tolerate the substitution of lysyl for arginyl residues. The cyclic AMP-dependent protein kinase, like the viral enzyme, had favourable kinetic constants for this series of peptides, but differed from the latter in being able to catalyze the phosphorylation of the peptides with two to four arginyl residues with similar efficiency. Studies with the protein, clupeine Y1, as substrate indicated that the pseudorabies virus protein kinase can tolerate arginyl residues on the carboxyl-terminal side of its target residue when there are suitable amino-terminal arginyl determinants. In this respect the virus protein kinase resembled protein kinase C but differed from the cyclic AMP-dependent protein kinase which cannot tolerate such carboxyl-terminal basic residues. The relationship of substrate specificity with model peptides to the ability of the pseudorabies virus protein kinase to phosphorylate proteins in vitro and in vivo is discussed.  相似文献   

8.
Cys-cdc2(8-20), a synthetic peptide derived from p34cdc2, was previously reported to be a specific and efficient substrate of a pp60c-src-related tyrosine kinase isolated from bovine spleen (the spleen tyrosine kinase) (Litwin, C.M.E., Cheng, H.-C., and Wang, J.H. (1991) J. Biol. Chem. 266, 2557-2566). The longer peptide, cdc2(1-24), was found to be phosphorylated by the kinase with similar efficiency, and Tyr15 was the only amino acid residue phosphorylated. This indicated that the amino acid sequence of cdc2(8-20) peptide, EKI-GEGTYGVVYK, contained the structural features important for protein tyrosine kinase substrate activity. A stepwise procedure using synthetic peptides was employed to investigate such structural features. First, a computer search of protein sequences homologous to cdc2(8-20) uncovered five protein kinases containing homologous sequence with tyrosine at a position corresponding to Tyr15 of p34cdc2. Second, a peptide derived from ribosomal S6 protein kinase (rsk(436-456] was synthesized. The rsk(436-456) peptide contained a segment, ETIGVGSYSVCKR, which is highly homologous to that of cdc2(8-20). It was found to be a very poor substrate of the spleen tyrosine kinase. Third, peptide analogs of cdc2(6-20) with single substitutions of amino acid residues Lys9, Glu12, Thr14, Gly16, Val18, and Tyr19 by amino acid residues at corresponding positions of rsk were synthesized and tested as spleen tyrosine kinase substrates. Only Glu12 and Thr14 substituted peptide analogs showed decreased substrate activities. (The substrate activity of a peptide is the ability of the peptide to serve as the substrate of the spleen tyrosine kinase. It was determined of the spleen tyrosine kinase. It was determined either by the kinetic parameters (Km and Vmax) of phosphorylation of the peptide or by the initial phosphorylation rate of the peptide by the spleen tyrosine kinase.) An analog with double substitution at Glu12 An analog with double substitution at Glu12 and Thr14 was found to be almost as poor a substrate as the rsk peptide. In addition, peptide analogs with Tyr15 substituted by Phe or D-Tyr had poor substrate activities as well as weak inhibitory activities. Thus, Glu12, Thr14, and Tyr15 residues of p34cdc2 contained structural components essential for the efficient phosphorylation of the peptides derived from p34cdc2 by the pp60c-src-related spleen tyrosine kinase.  相似文献   

9.
Affinities of the catalytic subunit (C1) of Saccharomyces cerevisiae cAMP-dependent protein kinase and of mammalian cGMP-dependent protein kinase were determined for the protein kinase inhibitor (PKI) peptide PKI(6-22)amide and seven analogues. These analogues contained structural alterations in the N-terminal alpha-helix, the C-terminal pseudosubstrate portion, or the central connecting region of the PKI peptide. In all cases, the PKI peptides were appreciably less active as inhibitors of yeast C1 than of mammalian C alpha subunit. Ki values ranged from 5- to 290-fold higher for the yeast enzyme than for its mammalian counterpart. Consistent with these results, yeast C1 exhibited a higher Km for the peptide substrate Kemptide. All of the PKI peptides were even less active against the mammalian cGMP-dependent protein kinase than toward yeast cAMP-dependent protein kinase, and Kemptide was a poorer substrate for the former enzyme. Alignment of amino acid sequences of these homologous protein kinases around residues in the active site of mammalian C alpha subunit known to interact with determinants in the PKI peptide [Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N-h, Taylor, S. S., & Sowadski, J. M. (1991) Science 253, 414-420] provides a structural basis for the inherently lower affinities of yeast C1 and cGMP-dependent protein kinase for binding peptide inhibitors and substrates. Both yeast cAMP-dependent and mammalian cGMP-dependent protein kinases are missing two of the three acidic residues that interact with arginine-18 in the pseudosubstrate portion of PKI. Further, the cGMP-dependent protein kinase appears to completely lack the hydrophobic/aromatic pocket that recognizes the important phenylalanine-10 residue in the N-terminus of the PKI peptide, and binding of the inhibitor by the yeast protein kinase at this site appears to be partially compromised.  相似文献   

10.
C S Gibbs  M J Zoller 《Biochemistry》1991,30(22):5329-5334
"Charged-to alanine" scanning mutagenesis of the catalytic subunit of the Saccharomyces cerevisiae cAMP-dependent protein kinase (C1) identified three glutamate residues, E171, E214, and E274, that are involved in the recognition of a peptide substrate, kemptide (Leu1Arg2Arg3Ala4Ser5Leu6Gly7). These glutamate residues are conserved or conservatively substituted with asparate in the serine/threonine protein kinases that have a requirement for basic residues on the N-terminal side of their phosphorylation sites. Alanine replacement mutants in C1 were subjected to kinetic analysis using alanine-substituted peptides as substrates. The additivity or nonadditivity of the effects of the alanine substitutions on the catalytic efficiency (kcat/Km) was analyzed. This allowed the identification of electrostatic interactions between the three glutamate residues in the enzyme and the two arginine residues present in the peptide substrate. The data suggest that E171 interacts with Arg2 in the substrate and that E214 and E274 both interact with Arg3. This may be a general method for identifying simple intermolecular interactions involving proteins when there is no three-dimensional structure available of the complex of interacting species. The identification of these interactions provides the potential for rational protein engineering of enzymes with alternative specificities.  相似文献   

11.
The enzyme tyrosine hydroxylase catalyzes the first step in the biosynthesis of dopamine, norepinephrine, and epinephrine. Tyrosine hydroxylase is a substrate for cyclic AMP-dependent protein kinase as well as other protein kinases. We determined the Km and Vmax of rat pheochromocytoma tyrosine hydroxylase for cyclic AMP-dependent protein kinase and obtained values of 136 microM and 7.1 mumol/min/mg of catalytic subunit, respectively. These values were not appreciably affected by the substrates for tyrosine hydroxylase (tyrosine and tetrahydrobiopterin) or by feedback inhibitors (dopamine and norepinephrine). The high Km of tyrosine hydroxylase correlates with the high content of tyrosine hydroxylase in catecholaminergic cells. We also determined the kinetic constants for peptides modeled after actual or potential tyrosine hydroxylase phosphorylation sites. We found that the best substrates for cyclic AMP-dependent protein kinase were those peptides corresponding to serine 40. Tyrosine hydroxylase (36-46), for example, exhibited a Km of 108 microM and a Vmax of 6.93 mumol/min/mg of catalytic subunit. The next best substrate was the peptide corresponding to serine 153. The peptide containing the sequence conforming to serine 19 was a very poor substrate, and that conforming to serine 172 was not phosphorylated to any significant extent. The primary structure of the actual or potential phosphorylation sites is sufficient to explain the substrate behavior of the native enzyme.  相似文献   

12.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

13.
Lipid extracts of bovine pulmonary surfactant, which retain many of the biophysical characteristics of natural surfactant, contain approx. 98% lipid and 2% protein, as determined by amino acid analysis. Polyacrylamide/urea gel electrophoresis reveals that lipid extract surfactant contained a major apoprotein band with apparent Mr 3500 and minor apoprotein bands with apparent Mr 15,000 and 7000. After reduction, the 15 kDa band disappears and is replaced by a prominent band with apparent Mr = 5000. Reduction also results in a relative diminution of the 7 kDa band and a relative increase in the intensity of the 3.5-kDa band. Edman degradation reveals two major peptide sequences which have been designated surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptide (N-terminal Leu) and a minor sequence designated surfactant-associated peptide (N-terminal Ile). The latter surfactant-associated peptide appears to be related to the N-terminal Leu peptide but lacks the terminal Leu. N-Terminal analysis by dansylation demonstrates that the 15 and 5 kDa (reduced) apoprotein species contain N-terminal Phe, Leu and Ile. The 3.5 and 7 kDa bands contain only N-terminal Leu and Ile. Chromatography of lipid extracts on silicic acid columns gives rise to fraction I, which contains protein and phosphatidylglycerol, and fraction II, which contains protein, phosphatidylglycerol and phosphatidylethanolamine. Fraction I was primarily composed of the 15-kDa apoproteins, while fraction II contained mainly the 3.5 and 7 kDa apoproteins. Both fractions exhibited biophysical activity after reconstitution with dipalmitoylphosphatidylcholine. These results indicate that lipid extracts contain an oligomer of 15 kDa containing surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptides (N-terminal Leu or Ile) which interact through sulfhydryl and perhaps other bonds. Lipid extracts also contain 3.5 kDa monomers of surfactant-associated peptides with N-terminal Leu and N-terminal Ile which can dimerize through sulfhydryl and perhaps hydrophobic interactions.  相似文献   

14.
Rhodopsin kinase phosphorylates serine- and threonine-containing peptides from bovine rhodopsin's carboxyl-terminal sequence. Km's for the peptides decrease as the length of the peptide is increased over the range 12-31 amino acids, reaching 1.7 mM for peptide 318-348 from the rhodopsin sequence. The Km for phosphorylation of rhodopsin is about 10(3) lower than that for the peptides, which suggests that binding of rhodopsin kinase to its substrate, photolyzed rhodopsin, involves more than just binding to the carboxyl-terminal peptide region that is to be phosphorylated. A synthetic peptide from the rhodopsin sequence that contains both serines and threonines is improved as a substrate by substitution of serines for the threonines, suggesting that serine residues are preferred as substrates. Analogous 25 amino acid peptides from the human red or green cone visual pigment, a beta-adrenergic receptor, or M1 muscarinic acetylcholine receptors are better substrates for bovine rhodopsin kinase than is the peptide from bovine rhodopsin. An acidic serine-containing peptide from a non-receptor protein, alpha s1B-casein, is also a good substrate for rhodopsin kinase. However, many basic peptides that are substrates for other protein kinases--histone IIA, histone IIS, clupeine, salmine, and a neurofilament peptide--are not phosphorylated by rhodopsin kinase. Polycations such as spermine or spermidine are nonessential activators of phosphorylation of rhodopsin or its synthetic peptide 324-348. Polyanions such as poly(aspartic acid), dextran sulfate, or poly(adenylic acid) inhibit the kinase. Poly(L-aspartic acid) is a competitive inhibitor with respect to rhodopsin (KI = 300 microM) and shows mixed type inhibition with respect to ATP.  相似文献   

15.
Siviter RJ  Nachman RJ  Dani MP  Keen JN  Shirras AD  Isaac RE 《Peptides》2002,23(11):2025-2034
Drosophila melanogaster angiotensin converting enzyme (Ance) and angiotensin converting enzyme related (Acer) are single domain homologs of mammalian peptidyl dipeptidase A (angiotensin I-converting enzyme) whose physiological substrates have not as yet been identified. We have investigated the in vitro substrate specificities of the two peptidases towards a variety of insect and mammalian peptides. Ance was generally much better than Acer at hydrolyzing peptides of 5-13 amino acids in length. Only two of the peptides, [Leu(5)]enkephalinamide and leucokinin-I were cleaved faster by Acer. Increasing NaCl concentration had opposite affects on the cleavage of [Leu(5)]enkephalin and [Leu(5)]enkephalinamide by Acer, decreasing the activity towards [Leu(5)]enkephalin but increasing the activity towards [Leu(5)]enkephalinamide. Of the insect peptides tested, the tachykinin-related peptide, Lom TK-1, proved to be the best substrate for Ance with a k(cat)/K(m) ratio of 0.122s(-1) microM(-1). However, in comparison, the D. melanogaster tachykinins, DTK-1, DTK-2, DTK-3 and DTK-4 were poor Ance substrates. DTK-5 was the best substrate of this family, but the apparent high K(m) for hydrolysis by Ance suggested that this peptide would not be a natural Ance substrate. This low affinity for DTK-5 is the likely reason why the peptide was not rapidly degraded in D. melanogaster hemolymph, where Ance was shown to be a major peptide-degrading activity.  相似文献   

16.
The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s−1. We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates.  相似文献   

17.
Role of acidic residues as substrate determinants for casein kinase I   总被引:17,自引:0,他引:17  
Sites phosphorylated by casein kinase I have been characterized by the presence of acidic amino acids NH2-terminal to the modified residue. Recently, phosphoserine was shown to be a particularly effective determinant for casein kinase I action when present in the motif -S(P)-X-X-S- (Flotow, H., Graves, P. R., Wang, A., Fiol, C. J., Roeske, R. W., and Roach, P. J. (1990) J. Biol. Chem. 265, 14264-14269). Nonetheless, nonphosphorylated substrates for casein kinase I are well documented. In this study, we examined the efficacy of Asp and Glu residues as determinants of casein kinase I action using synthetic peptide substrates. Peptides with runs of Asp residues in the motif Dn-X-X-S- were substrates for casein kinase I. Peptides with n = 3 or 4 were the most effective substrates, much better than n = 2. The peptide with n = 1, a single Asp residue, was a very poor substrate. A block of 4 Glu residues was a little less effective as a substrate determinant than 4 Asp residues in an otherwise identical peptide. The most effective substrate, with the motif -D-D-D-D-X-X-S-, was specific for casein kinase I and was not detectably phosphorylated by cyclic AMP-dependent protein kinase, casein kinase II, glycogen synthase kinase 3, or phosphorylase kinase and thus will be useful for the specific assay of casein kinase I. This peptide was nonetheless significantly worse as a substrate than peptides in which casein kinase I action was determined by phosphoserine in the -3 position. Still, the fact that Asp or Glu residues can specify a casein kinase I substrate suggests that acidic character has a role in substrate selection by this protein kinase.  相似文献   

18.
The effect of autophosphorylation on the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) is not well understood. We previously demonstrated that phospholipase C-gamma physically associates with the EGF-activated EGFR, but not with a kinase-negative mutant of the EGFR, and, moreover, that only the tyrosine-phosphorylated EGFR is able to associate with phospholipase C-gamma. We have now investigated the effect of autophosphorylation on the tyrosine kinase activity of the EGFR by employing the purified kinase-active intracellular domain of the EGFR (EGFR-IC) produced by a baculovirus expression system. Synthetic peptides, including ones which contain the individual major tyrosine phosphorylation sites of phospholipase C-gamma, were used as substrates. We found that the extensively prephosphorylated EGFR-IC exhibited similar reaction kinetics to the unphosphorylated EGFR-IC when angiotensin II was used as a nonspecific substrate. In contrast there was a clear stimulation of kinase activity due to autophosphorylation of the EGFR-IC when peptides representing either the major autophosphorylation site of the EGFR or the EGFR phosphorylation sites of phospholipase C-gamma were used as substrates. However, the modes of stimulation for these peptides differed. The binding affinity (Km) for the unphosphorylated EGFR-IC for the peptide containing Tyr-771 of phospholipase C-gamma was relatively poor compared with other peptides, but improved 5-6-fold when the EGFR-IC was prephosphorylated. On the other hand, autophosphorylation improved the reaction velocity (Vm) of the phosphorylation of other peptides by 2-3-fold, with little or no increase in affinity. These results suggest that autophosphorylation of the EGFR may induce a conformational change of its kinase domain which enhances its kinase activity with exogenous substrates and may induce association with phospholipase C-gamma by increasing its affinity to a domain containing Tyr-771.  相似文献   

19.
Synthetic beta-turn peptides as substrates for a tyrosine protein kinase   总被引:2,自引:0,他引:2  
An attempt has been made at defining the secondary structural requirement for phosphorylation of substrates of a protein tyrosine kinase from the leukemia virus-transformed LSTRA cell line. An examination of the sites of phosphorylation of substrates of protein tyrosine kinases indicated a relatively high probability of the beta-turn as the secondary structural feature at these sites. We have, therefore, synthesized three tyrosine peptides: Ala-Pro-Tyr-Gly-NHCH3, Leu-Pro-Tyr-Ala-NHCH3, and Pro-Gly-Ala-Tyr-NH2, of which the first two peptides, but not the third, would be expected to contain the tyrosine residue in a beta-turn. Circular dichroism and infrared spectral data on the peptides confirmed this expectation. Phosphorylation data on the peptides by the tyrosine kinase showed that the two beta-turn peptides were phosphorylated with Vmax and Km values comparable to those of the 13-residue-long arginine-containing synthetic peptide substrate having a sequence homologous to the autophosphorylation site of the LSTRA kinase. The peptides used here contain the shortest sequence length among the reported synthetic peptide substrates for protein tyrosine kinases. Their preference for the beta-turn indicated that this conformation may serve as the recognition site for tyrosine phosphorylation.  相似文献   

20.
The mitogen-activated protein kinase extracellular regulated kinase (ERK) plays a key role in the regulation of cellular proliferation. Mutations in the ERK cascade occur in 30% of malignant tumors. Thus understanding how the kinase identifies its cognate substrates as well as monitoring the activity of ERK is central to cancer research and therapeutic development. ERK binds to its protein targets, both downstream substrates and upstream activators, via a binding site distinct from the catalytic site of ERK. The substrate sequences that bind, or dock, to these sites on ERK influence the efficiency of phosphorylation. For this reason, simple peptide substrates containing only phosphorylation sequences typically possess low efficiencies for ERK. Appending short docking peptides derived from full-length protein substrates and activators of ERK to a phosphorylation sequence increased the affinity of ERK for the phosphorylation sequence by as much as 200-fold while only slightly diminishing the maximal velocity of the reaction. The efficiency of the phosphorylation reaction was increased by up to 150-fold, while the specificity of the substrate for ERK was preserved. Simple modular peptide substrates, which can be easily tailored to possess high phosphorylation efficiencies, will enhance our understanding of the regulation of ERK and provide a tool for the development of new kinase assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号