首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sand rats (Psammomys obesus) developed in response to different food intake various states of hyperglycemia and hyperinsulinism. 12 normo- and 10 hyperglycemic animals were selected by means of a weekly control of plasma glucose and plasma insulin over a period of 12 weeks after separation from the mother. During this time also the development of body weight gain was checked. In both groups of rats the hormonal regulation of glycerol release by incubated adipose tissue was investigated. In any case, the fat tissue from hyperglycemic sand rats showed a lower lipolytic responsiveness to noradrenaline stimulation than that of their normoglycemic controls. This correlates well with previous results in hyperglycemic sand rats in which the catecholamine-stimulated cAMP production was disturbed (Knospe and K?hler 1981). Degradation of released adenosine by addition of adenosine deaminase significantly enhanced the noradrenaline action on glycerol release in both groups of sand rats. Even though the noradrenaline-stimulated lipolytic activity of adipose tissue from normo- and hyperglycemic animals was enhanced in the presence of adenosine deaminase, the hormone resistance of adipose tissue from hyperglycemic sand rats was nevertheless not abolished. The theophylline-mediated adenosine receptor blockade gave further evidence that particularly endogenous adenosine released during incubation of adipose tissue from sand rats inhibited the noradrenaline action on lipolysis. The antilipolytic action of insulin on glycerol release is negligibly low in normoglycemic as well as hyperglycemic sand rats. The degradation of adenosine by adenosine deaminase failed to improve the insulin action. Adenosine addition completely blocked the stimulating effects of noradrenaline on glycerol release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The lipolytic response to catecholamines and the antilipolytic effect of $$Word$$ were studied as a function of adipose cell size and number. The results show that cellular enlargement is associated with an increase in the basal lipolysis as well as the release of glycerol induced by salbutamol (a beta(2)-receptor agonist), noradrenaline, adrenaline, and isopropyl-noradrenaline. The glycerol release induced by all these agents seems to be more favorably correlated with cell surface area than with cell volume or diameter. Under the incubation conditions used with glucose in the medium, the antilipolytic effect of insulin on the basal as well as on the adrenaline- and isopropylnoradrenaline-stimulated lipolysis was not consistent at any cell size studied. However, in the presence of noradrenaline and salbutamol, insulin exerted a consistent antilipolytic effect. The results show that the larger adipose cells are at least as sensitive to the antilipolytic effect of insulin as the smaller cells. The results imply that the previously reported diminished responsiveness to insulin shown by large adipose cells is exerted only on the side of lipid accumulation. It is suggested that the negative correlation between cell size and responsiveness to insulin on the side of lipid accumulation may be one way to control adipose cell enlargement.  相似文献   

3.
In order to analyze separately the effects of cell size and age on the metabolism of rat adipose tissue, fat cells of different sizes were obtained from the same animals. The rats were 4 or 15 wk old. The results show that age as well as cell size influences the metabolic rates. At a given cell size, the basal lipolysis, the lipolytic effects of glucagon and noradrenaline, the rate of glucose incorporation into the triglycerides, and the effect of insulin on glucose metabolism were considerably increased in the young animals. Furthermore, irrespective of fat cell size the lipolytic action of glucagon was reduced in old animals. The data thus show that experiments with large fat cells from old rats and with small cells from young animals cannot be directly compared because both variables may influence metabolic reactions.  相似文献   

4.
1. Plasma glucose, glycerol, free fatty acids and total lipid content of the white adipose tissue were measured in euthermic and hibernating jerboa. 2. During hibernation, plasma glucose and glycerol were low compared to the euthermic animals, whereas there was no obvious difference in plasma free fatty acids. The white adipose tissue lipid content was strongly reduced in the hibernating state. 3. The effect of lipolytic hormones (norepinephrine and glucagon) and antilipolytic hormone (insulin) on in vitro glycerol release by adipose tissue isolated from hibernating or euthermic jerboa has been studied. 4. The white adipose tissue from hibernating jerboa presented a higher sensitivity to norepinephrine and glucagon than that of euthermic jerboa; insulin did not modify either basal glycerol release or lipolysis induced by the two lipolytic hormones at low temperatures (7 degrees C) and during the rewarming (from 7 degrees C to 37 degrees C) of the tissue slices. 5. These results suggested that white adipose tissue constitutes an important source of substrates derived from lipolysis during hibernation.  相似文献   

5.
To investigate the antilipolytic effect of insulin in skeletal muscle and adipose tissue in vivo, the rates of glycerol release from the two tissues were compared in 10 nonobese women during a two-step euglycemic hyperinsulinemic clamp. Tissue interstitial glycerol levels were determined by microdialysis, and tissue blood flow was assessed with the (133)Xe clearance technique. Absolute rates of glycerol release were estimated according to Fick's principle. In both adipose tissue and muscle, glycerol levels decreased significantly already during the low insulin infusion rate. The fractional release of glycerol (difference between interstitial glycerol and arterialized venous plasma glycerol) was reduced by more than one-half in adipose tissue (P < 0.0001) in response to insulin, whereas it remained unaltered in skeletal muscle. Muscle blood flow rates increased by 60% (P < 0.02) during insulin infusion; in adipose tissue, blood flow rates did not change significantly in response to insulin. The basal rate of glycerol release from skeletal muscle amounted to approximately 15% of that from adipose tissue. After insulin infusion, the rate of adipose tissue glycerol release was markedly suppressed, whereas in skeletal muscle the rate of glycerol mobilization did not change significantly in response to insulin. It is concluded that insulin does not inhibit the rate of lipolysis in skeletal muscle of nonobese women.  相似文献   

6.
Genistein is a phytoestrogen exerting numerous biological effects. Its direct influence on adipocyte metabolism and leptin secretion was previously demonstrated. This study aimed to determine whether genistein antagonizes the antilipolytic action of insulin in rat adipocytes. Freshly isolated adipose cells were incubated for 90 min with epinephrine, epinephrine with insulin and epinephrine with a specific inhibitor of protein kinase A (H-89) at different concentrations of genistein (0, 6.25, 12.5, 25, 50 and 100 μM). Genistein failed to affect epinephrine-induced glycerol release, however, the inhibitory action of insulin on epinephrine-induced lipolysis was significantly abrogated in cells exposed to the phytoestrogen (12.5–100 μM). The increase in insulin concentration did not suppress the genistein effect. Its inhibitory influence on the antilipolytic action of insulin was accompanied by a substantial rise in cAMP in adipocytes. This rise appeared despite the presence of 10 nM insulin in the incubation medium. Further experiments, in which insulin was replaced by H-89, revealed that the antilipolytic action of protein kinase A inhibitor on epinephrine-induced lipolysis was not affected by genistein. This means that genistein counteracted the antilipolytic action of insulin due to the increase in cAMP levels and activation of protein kinase A in adipocytes. The observed attenuation of the inhibitory effect of insulin on triglyceride breakdown evoked by genistein was not related to its estrogenic activities, as evidenced in experiments employing the intracellular estrogen receptor blocker, ICI 182,780. Moreover, it was found that genistein-induced impairment of the antilipolytic action of insulin was not accompanied by changes in the proportion between fatty acids and glycerol released from adipocytes. The ability of genistein to counteract the antilipolytic action of insulin may contribute to the decreased triglyceride accumulation in adipose tissue.  相似文献   

7.
In order to evaluate the modulatory effects of manganese, high fat diet fed and alloxan diabetic rats were taken and the changes in the glucose oxidation, glycerol release and effects of manganese on these parameters were measured from adipose tissue. An insulin-mimetic effect of manganese was observed in the adipose tissue in the controls and an additive effect of insulin and manganese on glucose oxidation was seen when Mn2+ was addedin vitro. The flux of glucose through the pentose phosphate pathway and glycolysis was significantly decreased in high fat fed animals. Although thein vitro addition of Mn2+ was additive with insulin when14CO2 was measured from control animals, it was found neither in young diabetic animals (6–8 weeks old) nor in the old (16 weeks old). Both insulin and manganese caused an increased oxidation of carbon-1 of glucose and an increase of its incorporation into14C-lipids in the young control animals; the additive effect of insulin and manganese suggests separate site of action. This effect was decreased in fat fed animals, diabetic animals and old animals. Manganese alone was found to decrease glycerol in both the control and diabetic adipose tissue inin vitro incubations. The results of the effects of glucose oxidation, lipogenesis, and glycerol release in adipose tissue of control and diabetic animals of different ages are presented together with the effect of manganese on adipose tissue from high fat milk diet fed animals.  相似文献   

8.
The present work was designed to assess the possible benefits of (7% w/w) dietary fish oil in reversing the morphological and metabolic changes present in the adipose tissue of rats fed an SRD for a long time. With this purpose, in the epididymal fat tissue, we investigated the effect of dietary fish oil upon: i) the number, size and distribution of cells, ii) the basal and stimulated lipolysis, iii) the lipoprotein lipase (LPL) and the glucose 6-phosphate dehydrogenase activities, and iv) the antilipolytic action of insulin. The study was conducted on rats fed an SRD during 120 days with fish oil being isocaloric substituted for corn oil for 90-120 days in half the animals. Permanent hypertriglyceridemia, insulin resistance and abnormal glucose homeostasis were present in the rats before the source of fat in the diet was replaced. The major new findings of this study are the following: i) Dietary fish oil markedly reduced the fat pads mass, the hypertrophy of fat cells and improved the altered cell size distribution. ii) The presence of fish oil in the diet corrected the inhibitory effect of high sucrose diet upon the antilipolytic action of insulin, reduced the "in vitro" enhanced basal lipolysis and normalized isoproterenol-stimulated lipolysis. Fat pads lipoprotein lipase activity decreased reaching values similar to those observed in age-matched controls fed a control diet (CD). These effects were not accompanied by any change in rat body weight. All these data suggest that the dyslipemic rats fed a moderate amount of dietary fish oil constitute a useful animal model to study diet-regulated insulin action.  相似文献   

9.
The effects of adrenaline (0.5 microM) and the combination of adrenaline and insulin (1.7nM) on [6-14C]glucose metabolism were assessed in epididymal fat-pads from rats fed either a low- or high-fat diet. The response of lipolysis to adrenaline was clearly diminished in fat-fed rats. Insulin added to adrenaline inhibited the lipolysis by 50% regardless of the diet. Glucose utilization in adipose tissue of fat-fed rats was markedly stimulated by adrenaline (glucose uptake was increased 3-fold and the production of CO2 and the glycerol moiety of acylglycerol was increased 4-fold). However, adipose tissue from fat-fed rats was resistant to the effect of insulin to produce a further increase in adrenaline-stimulated glucose uptake. The intracellular capacity of lipogenesis on the one hand, and the production of CO2 and the glycerol moiety of acylglycerol on the other, are of prime importance in the action of insulin and adrenaline on glucose utilization in this model.  相似文献   

10.
In this work, we studied the effect of a short-term (3 wk) and a long-term (15 wk) administration of a sucrose-rich diet (SRD) to Wistar rats on the morphological aspects and metabolic function of the epididymal adipose tissue that may contribute to the mechanism underlying the impaired glucose homeostasis and insulin resistance. The present work showed the following. 1) There was both a moderate increase of basal lipolysis and a decrease of the antilipolytic action of insulin in the adipocytes of rats fed a SRD for 3 wk. Neither size alterations nor increases in adipose tissue mass were recorded in this period. 2) There was a significant (P < 0.05) increase of epididymal weight after 15 wk on a SRD as well as a hypertrophy of adipocytes with a clear alteration in the cell size distribution. This was accompanied by a significant increase (P < 0.05) of basal and stimulated lipolysis and a marked decrease (P < 0.05) of the antilipolytic action of insulin. Moreover, these changes appear together with a worsening of both impaired glucose homeostasis and insulin resistance. Our results also indicate that the length of time on the SRD plays an important role in the evolution of the adiposity and metabolic changes observed in the fat pad. Furthermore, the latter precedes the detection of adiposity.  相似文献   

11.
The present study was undertaken to investigate the potentiation by p-chlorophenoxyisobutyrate (CPIB) of the antilipolytic effect of insulin in isolated adipocytes from rats fed a (1) sucrose diet, (2) glycerol-lard diet, or (3) chow diet. CPIB supplementation in the diet consistently resulted in decreased serum triglyceride levels in rats from the three dietary groups. The catecholamine-stimulated glycerol release was significantly depressed to a greater extent by insulin when the fat cells were obtained from rats given CPIB compared to those without drug treatment. The enhanced insulin sensitivity was, however, not accompanied by any changes in insulin binding to adipocytes. These two observations were found in cell preparations from rats fed any one of the diets, although differences among dietary groups could be detected. In an in vitro experiment, epinephrine-stimulated glycerol release was progressively inhibited by increasing concentrations of CPIB in the incubation medium. However, the antilipolytic response to an optimal concentration of insulin (100 muU/ml) was augmented in the presence of CPIB. Thus, it seems that CPIB can potentiate the action of insulin in inhibiting mobilization of free fatty acid from the adipose tissue, and the coordinated effect of both antilipolytic agents is important in lowering serum triglyceride concentration. The mechanism by which CPIB facilitates the effect of insulin is discussed.  相似文献   

12.
The effect of non-selective (theophylline) inhibition of cyclic AMP breakdown on norepinephrine stimulated lipolysis rate was investigated in subcutaneous adipose tissue of obese subjects. In addition, changes in interstitial glucose and lactate concentration were assessed by means of the microdialysis technique. The interaction of endogenous released insulin and theophylline on adipocyte metabolism was determined. Theophylline and norepinephrine alone increased glycerol outflow significantly. When both agents were perfused in combination, interstitial glycerol concentration increased further. The enhanced glycerol level due to theophylline application was slightly decreased by insulin. In the presence of theophylline, extracellular glucose concentration increased, in contrast to the catecholamine. Norepinephrine decreased interstitial glucose level. When both drugs were added in combination, the level of interstitial glucose increased to about 1 mM, greater than with theophylline alone. With each intervention, lactate was synthesized. Local adipose tissue blood flow was increased by theophylline and theophylline plus norepinephrine. In conclusion, post-receptor mechanisms increased norepinephrine maximal stimulated lipolysis rate in subcutaneous adipose tissue. Glucose uptake was inhibited by the non-specific inhibitor of phosphodiesterase. The effect of insulin on inhibition of lipolysis was modest but sustained in the presence of high theophylline (10(-4) M) concentration. Phosphodiesterase activity may be relatively low in obese subjects in comparison with lean subjects. In lean subjects theophylline caused a transient reversal of the antilipolytic effect of insulin.  相似文献   

13.
The aim of this study was to explain the unresponsiveness of rabbit perirenal adipose tissue to epinephrine. The in vitro lipolytic response to isoproterenol and to epinephrine alone or associated with alpha- or beta-adrenergic blocking agents, was studied in the adipocytes of rabbits of various ages. Epinephrine induces a large glycerol release in young rabbit adipocytes whereas an increase in the rate of lipolysis cannot be shown with adult rabbit fat cells. Moreover, an antilipolytic effect can be shown for low concentrations of epinephrine when the basal rate of lipolysis is high in older rabbit adipocytes. Isoproterenol (beta-adrenomimetic) always exerts a strong adipokinetic effect, thus revealing functional beta-receptor sites. The blockade of alpha-adreneoceptor sites by phentolamine, which has no effect on young rabbits, abolishes the antilipolytic effect and unmasks strong lipolytic effect of epinephrine on aged and normal rabbit adipocytes. The loss of beta-adrenergic responsiveness towards epinephrine in the aging rabbit is linked to the involvement of an increased alpha-adrenergic responsiveness. The stimulation of alpha receptor sites by epinephrine leads to a depressive effect on lipolysis (lack of adipokinetic effect or antilipolytic action).  相似文献   

14.
The ability of growth hormone (GH) to stimulate lipolysis was examined using chicken abdominal adipose tissue explants incubated in vitro and purified pituitary and bacterially derived chicken and bovine GH. Consistently in the fourth hour of incubation, lipolysis (as determined by glycerol release) was increased by the presence of GH (1 micrograms/ml), irrespective of pituitary or bacterial derivation or of chicken or bovine origins. This effect of GH was observed with adipose tissue originating from young (6-8 weeks old) intact and hypophysectomized chicks and adult (6-9 months old) male chickens. Glycerol release was also enhanced by lower doses of GH (10 ng/ml with tissue from young and 100 ng/ml with tissue from adult chickens).  相似文献   

15.
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.  相似文献   

16.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

17.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

18.
Resveratrol is a naturally occurring polyphenol found in many dietary sources and red wine. Recognized as a cancer chemoprevention agent, an anti-inflammatory factor and an antioxidant molecule, resveratrol has been proposed as a potential anti-obesity compound and to be beneficial in diabetes. Most of the studies demonstrating the anti-adipogenic action of resveratrol were performed as long-term treatments on cultured preadipocytes. The aim of this study was to analyse the acute effects of resveratrol on glucose uptake and lipolysis in human mature adipocytes. Samples of subcutaneous abdominal adipose tissue were obtained from overweight humans and immediately digested by liberase. Fat cells were incubated (from 45 min to 4 h) with resveratrol 1 μM–1 mM. Then, glycerol release or hexose uptake was determined. Regarding lipolysis, the significant effects of resveratrol were found at 100 μM, consisting in a facilitation of isoprenaline stimulation and an impairment of insulin antilipolytic action. At 1 and 10 μM, resveratrol only tended to limit glucose uptake. Resveratrol 100 μM did not change basal glucose uptake but impaired its activation by insulin or by benzylamine. This inhibition was not found with other antioxidants. Such impairment of glucose uptake activation in fat cells may led to a reduced availability of glycerol phosphate and then to a decreased triacylglycerol assembly. Therefore, resveratrol increased triacylglycerol breakdown triggered by β-adrenergic activation and impaired lipogenesis. Consequently, our data indicate that resveratrol can be considered as limiting fat accumulation in human fat cells and further support its use for the mitigation of obesity.  相似文献   

19.
Fat mobilization was studied in vitro with epididymal fat pad tissue and also with cell suspensions from epididymal, retroperitoneal, and subcutaneous fat from the obese mutant "fatty" (fafa) and control rats of four different ages. Fat mobilization per cell in response to epinephrine was well above normal in young "fatties"; in older "fatties" the output per cell fell to near normal, but the much greater number of fat cells per rat indicated that the fat mobilizing capacity of the older "fatty" is well above normal. The "fatty" showed normal reactions to epinephrine in vivo: hyperglycemia, glycogenolysis, lipolysis with elevated free fatty acids and glycerol, and increased entry of free fatty acids into muscle and liver. Response was at least as great in "fatty" as in control animals. Metabolic indices-levels of circulating free fatty acids, glycerol, and in some cases glucose and lipid-determined at various ages in fed "fatties" and controls, and at intervals during prolonged fasting (70 days), were consistent with a picture of excessive adipose tissue lipolysis, excessive reesterification in the adipose tissue, fat mobilization in excess of need, and return of the excess to the adipose tissue via lipoproteins.  相似文献   

20.
The putative role played by insulin sensitizers in modulating adipose tissue lipolysis in the fasting state was evaluated in obese conscious Zucker rats treated with troglitazone or beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) and compared with nontreated lean and obese animals. The rates of appearance (R(a)) of glycerol and free fatty acid (FFA), primary intra-adipose reesterification, and secondary reuptake of plasma FFA in adipose fat were measured using constant infusion of stable isotope-labeled [(2)H(5)]glycerol, [2,2-(2)H(2)]palmitate, and radioactive [(3)H]palmitate. The overall lipolytic flux (R(a) glycerol) was increased 1.7- and 1.4-fold in obese animals treated with troglitazone or MEDICA 16, respectively, resulting in increased FFA export (R(a) FFA) in the troglitazone-treated rats. Primary intra-adipose reesterification of lipolysis-derived fatty acids was enhanced twofold by insulin sensitizers, whereas reesterification of plasma fatty acids was unaffected by either treatment. Despite the unchanged R(a) FFA in MEDICA 16 or the increased R(a) FFA induced by troglitazone, very low density lipoprotein production rates were robustly curtailed. Total adipose tissue reesterification, used as an estimate of glucose conversion to glyceride-glycerol, was increased 1.9-fold by treatment with the insulin sensitizers. Our results indicate that, in the fasting state, insulin sensitizers induce, in vivo, a significant activation rather than suppression of adipose tissue lipolysis together with stimulation of glucose conversion to glyceride-glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号