首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K+Nutrition and Na+Toxicity: The Basis of Cellular K+/Na+Ratios   总被引:38,自引:0,他引:38  
The capacity of plants to maintain a high cytosolic K+/Na+ratiois likely to be one of the key determinants of plant salt tolerance.Important progress has been made in recent years regarding theidentification and characterization of genes and transportersthat contribute to the cytosolic K+/Na+ratio. For K+uptake,K+efflux and K+translocation to the shoot, genes have been isolatedthat encode K+uptake and K+release ion channels and K+carriersthat are coupled to either a H+or Na+gradient. Although thepicture is less clear for the movement of Na+, one pathway,in the form of non-selective ion channels, is likely to playa role in Na+uptake, whereas Na+efflux and compartmentationare likely to be mediated by H+-coupled antiport. In addition,several proteins have been characterized that play prominentroles in the regulation of K+and/or Na+fluxes. In this BotanicalBriefing we will discuss the functions and interactions of thesegenes and transporters in the broader context of K+nutritionand Na+toxicity. Copyright 1999 Annals of Botany Company Salinty, K+/N+ratio, transporter, membrane.  相似文献   

2.
1. The major ionmotive ATPase, in animal cells, is the Na+, K+-ATPase or sodium pump.2. This membrane bound enzyme is responsible for the translocation of Na+ ions and K+ ions across the plasma membrane, an active transport mechanism that requires the expenditure of the metabolic energy stored within the ATP molecule.3. This ubiquitous enzyme controls directly or indirectly many essential cellular functions, such as, cell volume, free calcium concentration and membrane potential.4. It is, therefore, apparent that alterations in its regulation may play key roles in pathological processes.  相似文献   

3.
To increase our understanding of the physical nature of the Na+ and K+ forms of the Na+ + K+-dependent ATPase, thermal-denaturation studies were conducted in different types of ionic media. Thermal-denaturation measurements were performed by measuring the regeneration of ATPase activity after slow pulse exposure to elevated temperatures. Two types of experiments were performed. First, the dependence of the thermal-denaturation rate on Na+ and K+ concentrations was examined. It was found that both cations stabilized the pump protein. Also, K+ was a more effective stabilizer of the native state than was Na+. Secondly, a set of thermodynamic parameters was obtained by measuring the temperature-dependence of the thermal-denaturation rate under three ionic conditions: 60 mM-K+, 150 mM-Na+ and no Na+ or K+. It was found that ion-mediated stabilization of the pump protein was accompanied by substantial increases in activation enthalpy and entropy, the net effect being a less-pronounced increase in activation free energy.  相似文献   

4.
5.
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport.  相似文献   

6.
Enzymes catalyze essential chemical reactions needed for living processes. (Na+ +K+)-ATPase (NKA) is one of the key enzymes that control intracellular ion homeostasis and regulate cardiac function. Little is known about activation of NKA and its biological impact. Here we show that native activity of NKA is markedly elevated when protein-protein interaction occurs at the extracellular DVEDSYGQQWTYEQR (D-R) region in the alpha-subunit of the enzyme. The apparent catalytic turnover of NKA is approximately twice as fast as the controls for both ouabain-resistant and ouabain-sensitive enzymes. Activation of NKA not only markedly protects enzyme function against denaturing, but also directly affects cellular activities by regulating intracellular Ca2+ transients and inducing a positive inotropic effect in isolated rat cardiac myocytes. Immunofluorescent labeling indicates that the D-R region of NKA is not a conventional digitalis-binding site. Our findings uncover a novel activation site of NKA that is capable of promoting the catalytic function of the enzyme and establish a new concept that activating of NKA mediates cardiac contraction.  相似文献   

7.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

8.
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity.  相似文献   

9.
The influence of Na+ and K+ on the steady-state kinetics at 37 degrees C of (Na+ + K+)-ATPase was investigated. From an analysis of the dependence of slopes and intercepts (from double-reciprocal plots or from Hanes plots) of the primary data on Na+ and K+ concentrations a detailed model for the interaction of the cations with the individual steps in the mechanism may be inferred and a set of intrinsic (i.e. cation independent) rate constants and cation dissociation constants are obtained. A comparison of the rate constants with those obtained from an analogous analysis of Na+-ATPase kinetics (preceding paper) provides evidence that the ATP hydrolysis proceeds through a series of intermediates, all of which are kinetically different from those responsible for the Na+-ATPase activity. The complete model for the enzyme thus involves two distinct, but doubly connected, hydrolysis cycles. The model derived for (Na+ + K+)-ATPase has the following properties: The empty, substrate free, enzyme form is the K+-bound form E2K. Na+ (Kd = 9 mM) and MgATP (Kd = 0.48 mM), in that order, must be bound to it in order to effect K+ release. Thus Na+ and K+ are simultaneously present on the enzyme in part of the reaction cycle. Each enzyme unit has three equivalent and independent Na+ sites. K+ binding to high-affinity sites (Kd = 1.4 mM) on the presumed phosphorylated intermediate is preceded by release of Na+ from low-affinity sites (Kd = 430 mM). The stoichiometry is variable, and may be Na:K:ATP = 3:2:1. To the extent that the transport properties of the enzyme are reflected in the kinetic ATPase model, these properties are in accord with one of the models shown by Sachs ((1980) J. Physiol. 302, 219-240) to give a quantitative fit of transport data for red blood cells.  相似文献   

10.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

11.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

12.
13.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

14.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

15.
The effect of intracellular (i) and extracellular (o) Na+ on pre-steady-state transient current associated with Na+/Na+ exchange by the Na+/K+ pump was investigated in the vegetal pole of Xenopus oocytes. Current records in response to 40-ms voltage pulses from -180 to +100 mV in the absence of external Na+ were subtracted from current records obtained under Na+/Na+ exchange conditions. Na+-sensitive transient current and dihydroouabain-sensitive current were equivalent. The quantity of charge moved (Q) and the relaxation rate coefficient (ktot) of the slow component of the Nao+-sensitive transient current were measured for steps to various voltages (V). The data were analyzed using a four-state kinetic model describing the Na+ binding, occlusion, conformational change, and release steps of the transport cycle. The apparent valence of the Q vs. V relationship was near 1.0 for all experimental conditions. When extracellular Na+ was halved, the midpoint voltage of the charge distribution (Vq) shifted -25.3+/-0.4 mV, which can be accounted for by the presence of an extracellular ion-well having a dielectric distance delta=0.69+/-0.01. The effect of changes of Nai+ on Nao+-sensitive transient current was investigated. The midpoint voltage (Vq) of the charge distribution curve was not affected over the Nao+ concentration range 3.13-50 mM. As Nai+ was decreased, the amount of charge measured and its relaxation rate coefficient decreased with an apparent Km of 3.2+/-0.2 mM. The effects of lowering Nai+ on pre-steady-state transient current can be accounted for by decreasing the charge available to participate in the fast extracellular Na+ release steps, by a slowly equilibrating (phosphorylation/occlusion) step intervening between intracellular Na+ binding and extracellular Na+ release.  相似文献   

16.
17.
18.
Hickey KD  Buhr MM 《Theriogenology》2012,77(7):1369-1380
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm.  相似文献   

19.
The Physiological Relevance of Na+-Coupled K+-Transport   总被引:4,自引:0,他引:4       下载免费PDF全文
Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role.  相似文献   

20.
The controlling effect of ATP, K+ and Na+ on the rate of (Na+ + K+)-ATPase inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-C1) is used for the mathematical modelling of the interaction of the effectors with the enzyme under equilibrium conditions. 1. Of a series of conceivable interaction models, designed without conceptual restrictions to describe the effector control of inactivation kinetics, only one fits the experimental data described in a preceding paper. 2. The model is characterized by the coexistence of two binding sites for ATP and the coexistence of two separate binding sites for K+ and Na+ on the enzyme-ATP complex. On the basis of this model, the effector parameters fitting the experimental data most closely are estimated by means of nonlinear least-squares fits. 3. The apparent dissociation constants for ATP fo the enzyme-ATP complex or of the enzyme-(ATP)2 complex are computed to lie near 0.0024 mM and 0.34 mM, respectively, irrespective of whether K+ and Na+ were absent or K+ and K+ plus Na+, respectively, were present in the experiments. 4. The origin of the high and the low affinity site for binding of ATP to the (Na+ + K+)-ATPase molecule is traced back to the coexistence of two catalytic centres which, although primarily equivalent as to the reactivity of their thiol groups with NBD-C1, are induced into anticooperative communication by ATP binding and thus show an induced geometric asymmetry. 5. On the basis of the interaction model outlined under item 2 the apparent dissociation constant for K+ or Na+ in the (K+ + Na+)-liganded enzyme-ATP complex are computed to be 1.7 mM and 3.5 mM, respectively. 6. The conclusions concerning the coexistence of two primarily equivalent but anticooperatively interacting catalytic centres and the coexistence of two separate ionophoric centres for Na+ and K+ correspond to the appropriate basic postulates of the flip-flop concept of (Na+ + K+)-ATPase mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号