首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescent compound trisodium, 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) was used to quantify the apoplastic flux through red pine (Pinus resinosa Ait.) root systems—that portion of the total water flux reaching the xylem without ever crossing a semipermeable membrane. Flow was induced by pressure through detopped root systems, and by transpiration through intact seedlings. Apoplastic flux was determined by multiplying total flux by the ratio of PTS concentration in the xylem exudate to PTS concentration in the bathing medium.

Under aeration, apoplastic flux was less than 1% of total flux. Under anaerobic conditions, up to 50% of total flux was apoplastic suggesting that anaerobic conditions change the pathway of water flow into root xylem. The change under anaerobic conditions was reversible. Detopped root systems under pressure and intact seedlings under transpiration gave similar results. In detopped root systems, the magnitude of the pressure gradient may alter the apoplastic contribution to total flux.

  相似文献   

2.
Seeds of Zea mays L., germinating in soil, were exposed to very low doses of the sulfonylurea herbicides chlorsulfuron and metsulfuron methyl. At a concentration of 0.012 mg L–1, chlorsulfuron caused 72% and metsulfuron methyl 55% growth reduction of the young primary roots. Both herbicides also caused obvious injuries to the root tips. Scanning electron microscopic observations of the root tip surfaces indicated an inhibition of slime secretion at a herbicide concentration of 1.5 mg L–1. Transmission electron microscopy revealed obvious changes to the nuclei and deformation of radial cell walls in the primary root cortex at 0.012 and 1.5 mg L–1 for both herbicides. Moreover, the secretory cells of the root cap periphery showed partially irregular deposition of premature cell wall or slime material at a concentration of 0.012 mg L–1 of both herbicides.From the results of our electron microscopic observations we conclude that the primary roots of maize seedlings are seriously affected by extremely low concentrations of even those herbicides which (as chlorsulfuron and metsulfuron methyl) have been developed to inhibit the growth of dicotyledonous weeds. Moreover, we suggest that the frequently observed growth retardation of crop seedlings is a consequence of early root tip injuries caused by herbicide residues in the soil. ei]H Lambers  相似文献   

3.
Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities. The enrichments selected on low concentrations mineralized MCPA with shorter lag phases than those selected on high concentrations. Flow cytometry measurements revealed that mineralization led to cell growth. The presence of low-nucleic acid-content bacteria (LNA bacteria) was correlated with mineralization activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide concentrations can coexist in the same environment and that using a low herbicide concentration enables enrichment of apparently oligotrophic subpopulations.  相似文献   

4.
Summary A study was made of the effects of the herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and MCPA (4-chloro-2-methyl-phenoxyacetic acid) on ion uptake, leakage and growth of rice seedlings. Using isotopically-labelled solutions containing different concentrations of 2,4-D or MCPA, it was established that 10–4 M 2,4-D or MCPA effectively inhibited potassium ion uptake, while K-ion leakage from the roots occurred only at 10–3 M. The growth of the rice seedlings was markedly retarded even at low (10–6 M) concentrations, and the roots and shoots showed different tolerances to the herbicide. At 10–8 M herbicide, the effects were not injurious, but rather favourable. Reduction in root length by herbicides was not in accordance with dry-matter production.  相似文献   

5.
The intra-cellalar localization of the herbicide N,N-dimethyl–2,2-diphenylacetamide (diphenamid) was examined in 10 mm root tips of corn seedlings (Zea mays L. cv. Shawnee). Experiments are described which culminate in the observation that a significant, measurable effect on root growth occurs within 12 hours after treatment with diphenamid. Corn seedlings were then treated with 14-C-diphenamid for 12 hours and the 10 mm root tips excised and homogenized. By use of differential centrifugation and gel filtration, the root homogenate was separated into fractions; as follows; cell wall, mitochondria, microsomal, protein and eluate. The highest concentration of the herbicide was found in the root tips. Furthermore, most of the radioactivity was found in the eluate. Results are discussed as to localization of diphenamid in the microsomal and protein fraction and possible mode of action.  相似文献   

6.
The development of model plant-microbial associations between Gram negative soil microbes capable of degrading phenoxyacetate herbicides, such as 2,4-D and 2,4-D methyl ester, and the crops canola and wheat was described. Both an Acinetobacter baumannii pJP4 transconjugant and Alcaligenes eutrophus JMP 134 colonised non-parasitically on the roots of sterilised seedlings in a hydroponic system. Laser scanning confocal microscopy has shown that colonisation occurred both on the root surface and deeper inside the mucilage layer or inside some surface root cells. When 2,4-D was added to the hydroponic medium supporting the growth of those seedlings colonised by 2,4-D degrading bacteria, the gas chromatographic analysis showed a rapid decrease in the concentration of this herbicide. These bacteria colonising the root system were shown to be responsible for the degradation of 2,4-D. Plants inoculated with the 2,4-D degrading microbes were subsequently found to be less susceptible to damage by the herbicide in such hydroponic systems.  相似文献   

7.
Water Stress Enhances Ethylene-mediated Leaf Abscission in Cotton   总被引:11,自引:10,他引:1       下载免费PDF全文
Abscission of cotyledonary leaves from cotton (Gossypium hirsutum L. cv. Stoneville 213) seedlings occurred following relief from water stress. The amount of abscission was related to the magnitude of the plant water deficit. Leaf abscission promoted by exogenous ethylene was enhanced in seedlings subjected to water stress. Treatment with ethylene (2.0 to 3.2 microliters of ethylene per liter of air for 24 hours) raised the threshold plant water potential required to induce abscission from —17 to —7 bar, indicating that the stress caused the tissue to become predisposed to ethylene action. Based on the abscission response curve for seedlings treated with ethylene while under water stress, this apparent predisposition was developed as the plant water potentials reached the —7 to —10 bar range. The abscission-promoting effects of ethylene in combination with water stress were reversed with 15% CO2 at plant water potentials above —12 bar, but the CO2 reversal was lost at lower water potentials. These results are compatible with the concept that ethylene plays a regulatory role in leaf abscission induced by water stress.  相似文献   

8.
When seedlings of lettuce and turnip were grown in nutrientsolutions containing different concentrations of linuron, theconcentration in the shoot at the time when toxicity symptomsappeared was related to the solution concentration. With lettuce,for example, symptoms were recorded after 7 d at 0.15 µg/mland the shoot concentration was 2.7 µg/g fresh wt. At0.06 µg/ml, symptoms appeared after 10 d and the shootconcentration was then 1.1 µg/g fresh wt. If grown fordifferent periods in solutions containing linuron and then transferredto fresh nutrient solutions containing no herbicide, turnipor lettuce seedlings which had accumulated 0.7–0.8 µglinuron/g fresh wt developed toxicity symptoms 4 to 6 d later.Seedlings were also treated with linuron after they had grownfor different periods in control nutrient solutions. The shootconcentrations attained before toxicity symptoms appeared werehigher in those seedlings which were larger when herbicide treatmentbegan. These results show that the herbicide concentration insolution, time of exposure, and age of seedling are interrelatedin determining linuron phytotoxicity.  相似文献   

9.
10.
The absorption and translocation of atrazine and linuron bycarrot, parsnip, lettuce, and turnip seedlings in culture solutionswere measured. There were marked differences among species inthe distribution of herbicide within the plant. A high proportionof the linuron absorbed by carrot and parsnip seedlings wasretained in their root systems whereas in lettuce and turnipover 60 per cent of the herbicide absorbed was translocatedto the shoot. With atrazine, differences were also apparentbut were much less marked. The amounts of herbicide translocatedwere directly proportional to the amounts of water transpiredby the plants but the effective concentrations in the transpirationstream were always less than those in the treatment solutions.Examination of the extracts from the different plant speciesby thin-layer chromatography showed that up to 45 per cent ofthe linuron translocated in parsnip and carrot was present asmetabolites, but little metabolism had occurred in the shootsof lettuce and turnip or in the roots of any of the species.The data suggest that the tolerance of parsnip and carrot seedlingsto linuron results from a combination of root fixation and metabolismin the shoot.  相似文献   

11.
Growth parameters (leaf area, length of shoot and root, water content and dry matter accumulation), contents of reducing sugars and saccharose as well as activities of α- and β-amylases of castor bean and maize seedlings and adult plants supplemented with 0.5 μg g?1 and 2.5 μg g?1 of metribuzin either alone or in combination with 50 μg g?1 NaCl, were increased significantly whereas at high concentrations (5 and 10 μg g?1) of herbicide, an opposite response was apparent. On the other hand, polysaccharide content and invertase activity of castor bean and maize seedlings and adult plants were significantly decreased in response to low concentrations (0.5 and 2.5 μg g?1) of metribuzin and increased significantly at high concentrations (5 and 10 μg g?1) of the herbicide either alone or in combination with 50 μg g?1 NaCl. Total carbohydrate contents of castor bean and maize seedlings and whole plants treated with herbicide either alone or in combination with NaCl did not change significantly. Growth parameters, carbohydrate fractions contents and activities of enzymes in both castor bean and maize seedlings and whole plants treated with herbicide alone were consistently higher than those values detected in plants treated with herbicide in combination with NaCl.  相似文献   

12.
Addition of 0.5 and 2.5 gm?3 of metribuzin into Hoagland nutrient media, either alone or in combination with NaCl, induced significant decreases in nitrate-, amino-, ammonia-, and total soluble-N contents, whereas significant increases in these nitrogen fractions were apparent in maize and castor bean seedlings and plants treated with high concentrations (5 and 10 g m?3) of the herbicide, again either alone or in combination with NaCl. Protein- and total-N contents increased and decreased at low and high concentrations of the herbicide, respectively. The contents of chlorophyllsa andb, as well as carotenoids of both castor bean and maize seedlings and plants treated with low concentration of herbicide, either alone or supplemented with NaCl, were unaffected, whereas at high concentrations of the herbicide a significant decrease in chloroplast pigments was found. Nitrate reductase activity (NRA) was increased significantly at low concentrations of the herbicide alone and decreased significantly at high levels. Inclusion of NaCl into the herbicide media induced significant decreases in NRA of both castor bean and maize seedlings and plants. Unlike NRA changes, protease activity was increased significantly with high concentrations (5 and 10 g m?3) of metribuzin and decreased significantly with its low (0.5 and 2.5 g m?3) concentrations.  相似文献   

13.
Tomato mosaic tobamovirus (ToMV) infects red spruce (Picea rubens) and causes significant changes in its growth and physiology. The mechanism of infection and the pattern of virus concentration in seedling roots and needles were investigated. One-year-old red spruce seedlings were obtained from the nursery in April and June 1995 and August 1996 and tested for ToMV using enzyme-linked immunosorbent assay (ELISA). Virus-free seedlings were divided into three treatments: control, root inoculated, and needle inoculated. Two control, five root-inoculated, and five needle-inoculated seedlings were sampled destructively at biweekly intervals for 3 months and then tested for ToMV by ELISA. ToMV was transmitted to seedlings by root but not by needle inoculation. The virus was detected in 67 to 100% of roots but in less than 7% of needles of root-inoculated seedlings. The percent infection of root-inoculated seedlings differed significantly between the April and June and between the April and August inoculation periods. Virus concentration in infected seedling roots increased initially, peaked within 4 weeks postinoculation, and steadily declined thereafter. Significant differences in ToMV concentrations in roots also were detected among inoculation periods and sampling dates. Early spring may represent the optimal time for infection of seedlings, as well as for assaying roots for ToMV.  相似文献   

14.
Weeds are one of the major constraints in oilseed Brassica production. Use of effective herbicides to control weeds in the fields is one of the major objectives of agronomists. To improve weed control efficacy and minimize the application costs, complex combinations of 5-aminolevulinic acid (ALA) and a new postemergence herbicide, propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), were used to investigate their combined effects in relation to seedling growth and development of oilseed rape (Brassica napus cv. ZS 758). Brassica seeds were treated with different concentrations of ZJ0273 [100 (normal dose for rape), 200, 500, and 1000 mg/L] and ALA (0.1, 1, 10, and 50 mg/L). ALA was applied as pre- and post-treatment alone and in combination with ZJ0273. We found that ZJ0273 stress imposed negative effects on rape seedling growth. Shoot fresh weight, shoot length, and root fresh weight were inhibited significantly under ZJ0273 stress, and the rate of decline increased consistently with increased ZJ0273 concentration. Root oxidizability was also inhibited significantly under ZJ0273 stress conditions, and the higher the concentration of the herbicide ZJ0273, the lower the oxidizability. Herbicide ZJ0273 treatment produced a gradual decrease in antioxidant enzymes (peroxidase, superoxide dismutase, and ascorbate peroxidase) and an increase in peroxidation substance (malondialdehyde accumulation). The increase and decrease were consistent with the ZJ0273 dosage. Our results indicated that pre- and post-treatments with a lower dosage of ALA (1 mg/L) improved rape seedling growth and root oxidizability parameters, whereas a higher concentration of ALA (50 mg/L) depressed growth. We also found that plants treated with 1 mg/L ALA produced the highest shoot fresh weights, shoot lengths, root fresh weights, and root oxidizability when the seeds were treated with different concentrations of ZJ0273. Lower dosages of ALA improved the activities of antioxidant enzymes, whereas the highest dosage of ALA increased the accumulation of peroxidation substance. These results indicate that ALA has promotive effects in the recovery of growth and development of rape seedlings under herbicide ZJ0273 toxicity stress.  相似文献   

15.
The herbicide Sandoz 6706 (4-chloro-5-(dimethylamino)-2-α,α,α, (trifluoro-m-tolyl)-3(2H)-pyridazinone), when applied as a preplant soil treatment at a concentration of 0.05 μg/g reduced the content of β-carotene and chlorophylls in 21-day-old wheat seedlings (Triticum aestivum L.) by 55% and 29%, respectively, without affecting the fresh or dry matter of the seedlings. At 0.8 μg/g, the herbicide reduced the content of β-carotene and chlorophyll by as much as 98%, while the fresh weight of the albino seedlings was reduced by only 24%. The effect of the herbicide on chlorophyll b was much stronger than on chlorophyll a. Time course studies of pigment synthesis in Sandoz 6706-treated seedlings showed that chlorophyll, β-carotene, cyclic xanthophylls, phytoene, phytofluene, and ζ-carotene were accumulating during the first 7 days after sowing. Later on, there was a sharp decline in the content of chlorophyll and β-carotene and a gradual reduction in the content of phytofluene, ζ-carotene, and cyclic xanthophylls; the content of phytoene remained essentially unchanged. Coinciding with the drop in content of β-carotene and chlorophyll, there was a remarkable increase in the content of epoxy phytoene. It is suggested that Sandoz 6706 might act as an inhibitor of the cyclization reaction in the biosynthetic pathway of carotenoids and that other effects, such as the bleaching of chlorophyll, are a consequence of this inhibition.  相似文献   

16.
Growth and electrophysiological studies in roots of intact diclofop-methyl susceptible and resistant seedlings were conducted to test the hypothesis that the herbicide acts primarily as a proton ionophore. The ester formulation of diclofop, at 0.2 micromolar, completely inhibited root growth in herbicide-susceptible oat (Avena sativa L.) after a 96 hour treatment, but induced only a delayed transient depolarization of the membrane potential in oat root cortical cells. Root growth in susceptible maize (Zea mays L.) seedlings was dramatically reduced by exposure to 0.8 micromolar diclofop-methyl, while the same diclofop-methyl exposure hyperpolarized the membrane potential within 48 hours after treatment. Furthermore, exposure of maize roots to the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) (50 nanomolar), inhibited growth by only 31%, 96 hours after treatment, while the same CCCP exposure depolarized the resting potential by an average of 32 millivolts. Thus, the protonophore hypothesis cannot account for a differential membrane response to phytotoxic levels of diclofop-methyl in two susceptible species. From the results of others, much of the evidence to support the protonophore hypothesis was obtained using high concentrations of diclofop acid (100 micromolar). At a similar concentration, we also report a rapid (3 minute) diclofop-induced depolarization of the membrane potential in roots of susceptible oat and maize, moderately tolerant barley (Hordeum vulgare L.), and resistant pea (Pisum sativum L.) seedlings. Moreover, 100 micromolar diclofop acid inhibited growth in excised cultured pea roots. In contrast, 100 micromolar diclofop-methyl did not inhibit root growth. Since the membrane response to 100 micromolar diclofop acid does not correspond to differential herbicide sensitivity under field conditions, results obtained with very high levels of diclofop acid are probably physiologically irrelevant. The results of this study suggest that the effect of diclofop-methyl on the membrane potentials of susceptible species is probably unrelated to the primary inhibitory effect of the herbicide on plant growth.  相似文献   

17.
《Plant science》1986,43(3):229-232
Epicotyl and root sections from ‘Valencia’ orange (Citrus sinensis (L.) Osb.) seedlings were cultured in vitro on a Murashige-Tucker medium containing benzylaminopurine (BAP) and varying naphthaleneacetic acid (NAA) concentrations. A gradient of bud-forming potential was observed in both epicotyls and roots. NAA influenced the expression of the gradient with a concentration of 0.02 mg/l enhancing the expression and a concentration of 2 mg/l diminishing it. The presence or absence of the shoot and/or root apices did not influence the bud-forming capacity of cultured sections of epicotyls or roots. However, the presence of cotyledons did increase the bud-forming capacity of epicotyl sections 1 cm from the cotyledonary node. These data support the hypothesis that the bud-forming gradient in ‘Valencia’ epicotyls may be due to the presence of promoting substance(s) emanating from the cotyledons. However, the data do not support this hypothesis for explaining the bud-forming gradient in roots.  相似文献   

18.
Luttge U  Laties GG 《Plant physiology》1966,41(9):1531-1539
The characteristics of ion transport to the shoots of young corn seedlings were studied with respect to the nature of the isotherm through a wide concentration range, the competitive influence of closely related ions upon the transport of a given ion, and the influence of the counter-ion. Both with respect to 36Cl and 86Rb transport, the characteristics of the process in every way resemble uptake by non-vacuolate root tips wherein the plasma membrane is the only membrane involved in absorption, and where system 1 — of the 2 systems which can be shown to participate in absorption by vacuolate tissue — is the only system operative. Net ion uptake by the roots per se was shown to display both the high affinity (system 1) and low affinity (system 2) mechanisms. It is concluded that the symplastic theory of ion movement to the xylem is valid, and that the contention that system 1 operates at the plasma membrane while system 2 functions at the tonoplast is strengthened.  相似文献   

19.
Parthenin is a natural constituent of Parthenium hysterophorus with phytotoxic and allelopathic properties. Its effect on two weedy species viz. Avena fatua and Bidens pilosa was studied with a view to explore its herbicidal potential. Germination of both the weeds was reduced with increasing concentration of parthenin and a dose-response relationship was observed. This provided information on LC50 and Inhibition threshold concentrations of parthenin that could be useful for future studies. Further, parthenin also inhibited the growth of both the weeds in terms of root and shoot length and seedling dry weight. Inhibition of root growth was greater than that of shoot growth. Similar observations were made when the test weeds were grown in soil amended with different concentrations of parthenin. In addition to growth, there was a reduction of chlorophyll content in the growing seedlings. It also caused water loss in the weedy species. The study, therefore, reveals that parthenin exerts an inhibitory effect on the growth and development of both weeds and can be further explored as a herbicide for future weed management strategies.  相似文献   

20.
While phosphate (Pi) serves as an essential and indispensible plant nutrient, phosphite (Phi) acts as a potent herbicide. Despite their differential influence on plants, both the ions can attenuate phosphate starvation responses (PSRs). We analyzed and compared Pi and Phi uptake and accumulation, attenuation of PSRs and the morphological and physiological responses of the rice seedlings in response to the increasing concentrations of Pi and Phi. Our study revealed that increasing levels of Phi led to pronounced reduction in shoot and root mass in rice seedlings in comparison to similar Pi treatments. Phi inhibited root hair and root formation at 5 and 30 mM Phi concentrations, respectively. Whereas, higher Pi concentrations (40 and 50 mM) affected only root hair elongation. Increasing Phi dose led to drastic reduction in chlorophyll content which was not so in case of Pi. There was inverse relationship between external Pi/Phi level and anthocyanin content of the leaves. In comparison to 20 mM Pi treatment, similar dose of Phi led to significant downregulation of Pi transporters in both leaves and roots. Rice seedlings were found to accumulate mmol and µmol levels of Pi and Phi, respectively. Comparison of various PSR parameters revealed that in comparison to Pi, Phi exhibited greater degree of attenuation of PSRs. Lesser Phi accumulation and greater attenuation of PSRs by Phi indicate plant’s adaption to restrict entry of this toxic ion inside cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号