首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

2.
Adenylate cyclase catalytic subunits from Neurospora crassa membranes may interact with regulatory factors from membranes of bovine retinal rod outer segments (pretreated with N-ethylmaleimide), reconstituting a heterologous system which, in the presence of light, is catalytically active in assay mixtures containing MgATP. Maximal activation was observed at 550 nm. Transducin-depleted retinal membranes were not capable of reconstituting the heterologous light-stimulated adenylate cyclase system. Addition of a transducin preparation to depleted membranes restored the reconstitution capacity of these membranes. A similar heterologous adenylate cyclase system was reconstituted with Neurospora and mouse retinal whole membranes (pretreated with N-ethylmaleimide). Membranes from mice suffering photoreceptor degeneration (rd homozygotes) did not reconstitute an heterologous adenylate cyclase system.  相似文献   

3.
Detergent-resistant membrane microdomains in the plasma membrane, known as lipid rafts, have been implicated in various cellular processes. We report here that a low-density Triton X-100-insoluble membrane (detergent-resistant membrane; DRM) fraction is present in bovine rod photoreceptor outer segments (ROS). In dark-adapted ROS, transducin and most of cGMP-phosphodiesterase (PDE) were detergent-soluble. When ROS membranes were exposed to light, however, a large portion of transducin localized in the DRM fraction. Furthermore, on addition of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to light-bleached ROS, transducin became detergent-soluble again. PDE was not recruited to the DRM fraction after light stimulus alone, but simultaneous stimulation by light and GTPgammaS induced a massive translocation of all PDE subunits to the DRM. A cholesterol-removing reagent, methyl-beta-cyclodextrin, selectively but partially solubilized PDE from the DRM, suggesting that cholesterol contributes, at least in part, to the association of PDE with the DRM. By contrast, transducin was not extracted by the depletion of cholesterol. These data suggest that transducin and PDE are likely to perform their functions in phototransduction by changing their localization between two distinct lipid phases, rafts and surrounding fluid membrane, on disc membranes in an activation-dependent manner.  相似文献   

4.
Interaction of small G proteins with photoexcited rhodopsin   总被引:1,自引:0,他引:1  
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.  相似文献   

5.
M Pines  P Gierschik  A Spiegel 《FEBS letters》1985,182(2):355-359
The 35-kDa beta-subunit of transducin purified from rod outer segment membranes is cleaved into 2 major fragments by trypsin, and 7 major fragments by chymotrypsin. Identical fragments are visualized by immunoblotting with transducin-beta specific antisera after proteolysis of rod outer segment membranes, purified brain guanine nucleotide binding proteins, and brain membranes. The results indicate that the beta-subunits of transducin and of brain guanine nucleotide binding proteins are not only similar structurally, but are also similarly oriented in membranes with respect to accessibility to proteolytic enzymes.  相似文献   

6.
The complex between the short splice variant of the ninth member of the RGS protein family and the long splice variant of type 5 G protein beta subunit (RGS9-Gbeta5L) plays a critical role in regulating the duration of the light response in vertebrate photoreceptors by activating the GTPase activity of the photoreceptor-specific G protein, transducin. RGS9-Gbeta5L is tightly associated with the membranes of photoreceptor outer segments; however, the nature of this association remains unknown. Here we demonstrate that rod outer segment membranes contain a limited number of sites for high affinity RGS9-Gbeta5L binding, which are highly sensitive to proteolysis. In membranes isolated from bovine rod outer segments, all of these sites are occupied by the endogenous RGS9-Gbeta5L, which prevents the binding of exogenous recombinant RGS9-Gbeta5L to these sites. However, treating membranes with urea or high pH buffers causes either removal or denaturation of the endogenous RGS9-Gbeta5L, allowing for high affinity binding of recombinant RGS9-Gbeta5L to these sites. This binding results in a striking approximately 70-fold increase in the RGS9-Gbeta5L ability to activate transducin GTPase. The DEP (disheveled/EGL-10/pleckstrin) domain of RGS9 plays a crucial role in the RGS9-Gbeta5L membrane attachment, as evident from the analysis of membrane-binding properties of deletion mutants lacking either N- or C-terminal parts of the RGS9 molecule. Our data indicate that specific association of RGS9-Gbeta5L with photoreceptor disc membranes serves not only as a means of targeting it to an appropriate subcellular compartment but also serves as an important determinant of its catalytic activity.  相似文献   

7.
In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.  相似文献   

8.
Photoisomerization of rhodopsin activates a heterotrimeric G-protein cascade leading to closure of cGMP-gated channels and hyperpolarization of photoreceptor cells. Massive translocation of the visual G-protein transducin, Gt, between subcellular compartments contributes to long term adaptation of photoreceptor cells. Ca(2+)-triggered assembly of a centrin-transducin complex in the connecting cilium of photoreceptor cells may regulate these transducin translocations. Here we demonstrate expression of all four known, closely related centrin isoforms in the mammalian retina. Interaction assays revealed binding potential of the four centrin isoforms to Gtbetagamma heterodimers. High affinity binding to Gtbetagamma and subcellular localization of the centrin isoforms Cen1 and Cen2 in the connecting cilium indicated that these isoforms contribute to the centrin-transducin complex and potentially participate in the regulation of transducin translocation through the photoreceptor cilium. Binding of Cen2 and Cen4 to Gbetagamma of non-visual G-proteins may additionally regulate G-proteins involved in centrosome and basal body functions.  相似文献   

9.
Timely termination of the light response in retinal photoreceptors requires rapid inactivation of the G protein transducin. This is achieved through the stimulation of transducin GTPase activity by the complex of the ninth member of the regulator of G protein signaling protein family (RGS9) with type 5 G protein beta subunit (Gbeta5). RGS9.Gbeta5 is anchored to photoreceptor disc membranes by the transmembrane protein, R9AP. In this study, we analyzed visual signaling in the rods of R9AP knockout mice. We found that light responses from R9AP knockout rods were very slow to recover and were indistinguishable from those of RGS9 or Gbeta5 knockout rods. This effect was a consequence of the complete absence of any detectable RGS9 from the retinas of R9AP knockout mice. On the other hand, the level of RGS9 mRNA was not affected by the knockout. These data indicate that in photoreceptors R9AP determines the stability of the RGS9.Gbeta5 complex, and therefore all three proteins, RGS9, Gbeta5 , and R9AP, are obligate members of the regulatory complex that speeds the rate at which transducin hydrolyzes GTP.  相似文献   

10.
Evidence suggests that caveolins, 21-24 kDa cholesterol-binding proteins that generally reside in specialized detergent-resistant membrane microdomains, act as signaling scaffolds. Detergent-resistant membranes isolated from rod outer segments (ROS) have been previously shown to contain the photoreceptor G-protein, transducin. In this report we show, by subcellular fractionation, that caveolin-1 is an authentic component of purified ROS. We demonstrate that caveolin-1 in ROS almost exclusively resides in low-buoyant-density, cholesterol-rich, detergent-resistant membranes that can be disrupted by cholesterol depletion using methyl-beta-cyclodextrin (MCD). Cholesterol depletion was also observed to extract a pool of transducin alpha (Talpha) from ROS membranes. Immunoprecipitation with anti-caveolin-1 revealed the association of Talpha in the absence of Tbetagamma. Treatment of ROS with MCD resulted in a 2-fold decrease in recovery of Talpha in anti-caveolin-1 immunoprecipitates. This interaction was also completely disrupted when ROS were exposed to light in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), a nonhydrolyzable GTP analogue. In addition, caveolin-1/Talpha association in the immune complex was disrupted by a peptide based on the primary sequence of the caveolin-1 scaffolding domain. Finally, we confirm the colocalization of caveolin-1 and Talpha in photoreceptors by immunofluorescence microscopy. These results strongly suggest that the association between Talpha and caveolin-1 occurs in cholesterol-rich, detergent-resistant membranes and is likely to be dependent upon the activation state of Talpha.  相似文献   

11.
R N Lolley  R H Lee 《FASEB journal》1990,4(12):3001-3008
A single photon can be detected by a rod photoreceptor cell. The absorption of light by rhodopsin triggers a cascade of reactions that amplifies the photon signal and results in ion channel closure with hyperpolarization of the rod photoreceptor cell. Light-induced conformational changes in rhodopsin facilitate the binding of a guanosine nucleotide-binding protein, transducin, which then undergoes a GTP-GDP exchange reaction and dissociation of the transducin complex. A subunit of transducin then activates a phosphodiesterase complex that hydrolyzes cyclic GMP. In darkness, cyclic GMP binds to cation channels of the photoreceptor plasma membrane, maintaining them in an open configuration. The light-induced reduction in cyclic GMP concentration dissociates the bound cyclic GMP, resulting in channel closure and hyperpolarization. Down-regulation of the cascade involves other proteins that block the interaction of transducin with rhodopsin and another protein that may interfere with transducin recycling. Cone photoreceptors possess a light-activated cascade that follows the rod format, but it is composed of proteins that are homologous to those of rod photoreceptors. Phototransduction in invertebrate photoreceptors uses rhodopsin to activate a cascade that uses phosphoinositides and calcium ion to regulate membrane polarization.  相似文献   

12.
Rhodopsin samples, isolated using four different extraction procedures, were used to investigate the photodependent activation of the GTPase activity of transducin. A complete inhibition of transducin light-dependent GTP hydrolytic activity was observed when rhodopsin purified in the presence of 1% digitonin, following rod outer segment (ROS) solubilization with 1% 3-[(3-cholamidopropyl) dimethylammonio]-1-propane-sulfonate (CHAPS), was used for its activation [0 pmol of inorganic phosphate (Pi) released/min/pmol of rhodopsin]. Rhodopsin, isolated in the presence of 1% digitonin following ROS solubilization with 1% digitonin, was capable of stimulating slightly transducin GTPase activity, with an initial rate of 1 pmol of GTP hydrolyzed/min/pmol of rhodopsin. However, rhodopsin purified in the presence of 0.2% n-dodecyl-beta-D-maltoside (DM), following ROS solubilization with either 1% CHAPS or 1% DM, stimulated the enzymatic activity of transducin in a light-dependent manner, with an initial rate of 5 pmol of Pi released/min/pmol of rhodopsin. Addition of 0.075% egg phosphatidylcholine (PC) to the four different solubilized rhodopsin samples significantly enhanced light-stimulated GTP hydrolysis by transducin, with initial rates increasing from 0 to 1, 1 to 2, and 5 to 30 pmol of Pi released/min/pmol of rhodopsin, respectively. Furthermore, DM-solubilized rhodopsin induced the hydrolysis of the maximum amount of GTP by transducin at 0.0075% PC, while digitonin-solubilized rhodopsin only stimulated the GTPase activity of transducin to a similar value, when the amount of the photoreceptor protein was increased 4-fold and 0.15% PC was added to the assay mixture. These results suggest that the effective photoactivation of transducin by rhodopsin requires phospholipids, which seem to be differentially eliminated with the detergent extraction procedure utilized during ROS membranes solubilization and photopigment isolation.  相似文献   

13.
Centrins are Ca2+-binding EF-hand proteins. All four known centrin isoforms are expressed in the ciliary apparatus of photoreceptor cells. Cen1p and Cen2p bind to the visual G-protein transducin in a strictly Ca2+-dependent way, which is thought to regulate light driven movements of transducin between photoreceptor cell compartments. These relatively slow motile processes represent a novel paradigm in light adaptation of photoreceptor cells. Here we validated specific phosphorylation as a novel regulator of centrins in photoreceptors. Centrins were differentially phosphorylated during photoreceptor dark adaptation. Inhibitor treatments revealed protein kinase CK2 as the major protein kinase mediating phosphorylation of Cen1p, Cen2p and Cen4p, but not Cen3p, at a specific target sequence. CK2 and ciliary centrins co-localize in the photoreceptor cilium. Direct binding of CK2 and centrins to ciliary microtubules may spatially integrate the enzyme-substrate specificity in the cilium. Kinetic light-scattering assays revealed decreased binding affinities of phosphorylated centrins to transducin. Furthermore, we show that this decrease is based on the reduction of Ca2+-binding affinities of centrins. Present data describe a novel regulatory mechanism of reciprocal regulation of stimulus dependent distribution of signaling molecules.  相似文献   

14.
E Vadot 《Biochimie》1987,69(4):371-377
Retinal S antigen is a soluble protein found in abundance in photoreceptor cells. Immunization of laboratory animals with this antigen in adjuvant induces experimental autoimmune uveoretinitis. Cellular immunity plays a major role in this condition. Autoimmune responses toward retinal S antigen are often observed in patients with retinal inflammatory disease, however, these responses are usually secondary to local tissue damage. The S antigen is identical to the 48 K protein characterized in rod outer segments by its light-dependent binding to the disk membrane in the presence of ATP. This protein binds specifically to photoexcited and phosphorylated rhodopsin, and quenches the activity of the light-dependent cGMP-phosphodiesterase, most probably because it competes with transducin. There is no evidence for any direct inactivation of phosphodiesterase by 48 K protein. In view of the numerous similarities between the photoreceptor enzyme cascade and hormone-activated cyclase systems, a related protein could be involved in the desensitization of hormonal systems.  相似文献   

15.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

16.
Light-Dependent Compartmentalization of Transducin in Rod Photoreceptors   总被引:1,自引:0,他引:1  
Three major visual signaling proteins, transducin, arrestin, and recoverin undergo bidirectional translocations between the outer segment and inner compartments of rod photoreceptors in a light-dependent manner. The light-dependent translocation of proteins is believed to contribute to adaptation and neuroprotection of photoreceptor cells. The potential physiological significance and mechanisms of light-controlled protein translocations are at the center of current discussion. In this paper, I outline the latest advances in understanding the mechanisms of bidirectional translocation of transducin and determinants of its steady-state distribution in dark- and light-adapted photoreceptor cells.  相似文献   

17.
It was found that antibodies specifically raised against GTP-binding proteins of bovine retina photoreceptor membranes block the inhibiting effect of estradiol on phosphodiesterase from human and rat uterus cytosol and prevent the combined effect of catecholamines and guanylyl-5'-imidodiphosphate on rat skeletal muscle adenylate cyclase. Using double radial immunodiffusion, it was demonstrated that the antibodies form a precipitating complex with purified tubulin from bovine brain as well as with retinal preparations obtained from the visual organs of ox, pig, rat, frog, some fish species and one reptile species. No appearance of a precipitation band was observed, when retinal preparations of invertebrates (squid, octopus) were used as antigens. The antibodies interacted with the alpha- and beta-subunits of GTP-binding proteins of bovine retinal photoreceptor membranes.  相似文献   

18.
Both the light-stimulated cGMP phosphodiesterase of retinal rod outer segments (ROS) and hormone-stimulated adenylate cyclase are regulated by guanine nucleotide-binding regulatory proteins (N). Transducin serves as the signal-carrying regulatory protein in ROS, and the N protein (also called G or G/F) performs this role in the adenylate cyclase system. The GTP form of these regulatory proteins activates the corresponding enzyme, whereas the GDP form does not. Both transducin and the N protein possess a GTPase activity that restores the regulatory protein to the unstimulated state. Cholera enterotoxin catalyzes the transfer of ADP-ribose from NAD+ to the N protein, which inhibits its GTPase activity and activates adenylate cyclase. We report here that the toxin also catalyzes ADP-ribosylation of the alpha-subunit of transducin in ROS membranes. This modification of the guanine nucleotide-binding subunit of transducin is markedly enhanced by the bleaching of rhodopsin and by the addition of guanosine-5'-(beta, gamma-imino)triphosphate. In contrast, GDP, GTP, and guanosine-5'-(3-O)thiotriphosphate inhibit the reaction, while GMP and ATP have no effect. Under optimal conditions, toxin catalyzes labeling of 0.7 mol of the alpha-subunit of transducin/mol of bound [3H]guanosine-5'-(beta, gamma-imido)triphosphate and causes 70% inhibition of the light-dependent GTPase activity of transducin in ROS. These results indicate close functional homology between transducin of ROS and the N protein of adenylate cyclase.  相似文献   

19.
Navarro J  Landau EM  Fahmy K 《Biopolymers》2002,67(3):167-177
The primary step in cellular signaling by G-protein-coupled receptors (GPCRs) is the interaction of the agonist-activated transmembrane receptor with an intracellular G-protein. Understanding the underlying molecular mechanisms requires the structural determination of receptor G-protein complexes that are not yet achieved. The crystal structure of the bovine photoreceptor rhodopsin, a prototypical GPCR, was solved recently and the structures of different states of engineered G-proteins were reported. Posttranslational hydrophobic modifications of G-proteins are in most cases removed for crystallization but play functional roles for interactions among G-protein subunits with receptors, as well as membranes. Bovine rhodopsin is reconstituted into lipidic cubic phases to assess their potential for crystallization of receptor G-protein complexes under conditions that may preserve the structural and functional roles of hydrophobic protein modifications. Three-dimensional bilayers of a bicontinuous lipidic cubic phase are successfully employed for crystallization of membrane and soluble proteins. UV-visible absorption and attenuated total reflection Fourier transform IR difference spectroscopy reveal that light activation of cubic phase reconstituted rhodopsin results in the generation of a metarhodopsin II-like state. Via diffusion along aqueous channels, transducin couples efficiently to this photoproduct as evidenced by the nucleotide-dependent increase of transducin fluorescence. Thus, rhodopsin transducin interactions do not crucially depend on the presence of sn1 and sn2 acyl chains, phospholipid head groups, or membrane planarity. Because lipidic cubic phases preserve the essential functional and structural properties of native rhodopsin and transducin, they appear suitable for the detergent-free crystallization of receptor G-protein complexes carrying a normal pattern of hydrophobic modifications.  相似文献   

20.
The dynamic localization of proteins within cells is often determined by environmental stimuli. In retinal photoreceptors, light exposure results in the massive translocation of three key signal transduction proteins, transducin, arrestin and recoverin, into and out of the outer segment compartment where phototransduction takes place. This phenomenon has rapidly taken the center stage of photoreceptor cell biology, thanks to the introduction of new quantitative and transgenic approaches. Here, we discuss evidence that intracellular protein translocation contributes to adaptation of photoreceptors to diurnal changes in ambient light intensity and summarize the current debate on whether it is driven by diffusion or molecular motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号