首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.  相似文献   

2.
Osada N  Takeda H  Kitajima K  Pearcy RW 《Oecologia》2003,137(2):181-187
For a shade-tolerant SE Asian tropical tree, Elateriospermum tapos (Euphorbiaceae), we studied field-established saplings in gaps and the shaded understory to test the hypothesis that differences in leaf demography and leaf life span under contrasting light regimes should be functionally correlated with architecture, self-shading and nitrogen distribution within the sapling crown. Rates of leaf production and net leaf gain were greater for saplings in gaps than those in the understory. Median leaf life span was approximately 26 months in the gap saplings, while it was estimated to be greater than 38 months in the understory saplings. Consequently, gap saplings had a greater standing leaf number and experienced greater degrees of self-shading than understory saplings. Light availability at individual leaves, estimated by a combination of canopy photos and a three-dimensional architecture model, were negatively correlated with leaf age in gap saplings but not so in understory saplings. Leaf nitrogen content per unit area (Narea) was influenced more by light availability than by leaf age in the gap saplings. In contrast, in understory saplings, Narea was neither correlated with light availability nor with leaf age, and did not decrease significantly before 38 months in leaf age. We conclude that saplings of this shade-tolerant species apparently prolong their leaf life span in the shaded understory through slower rates of leaf production, lower standing number of leaves and lower degrees of self shading than in gap, and that the rate of decline of Narea with leaf age depends on architecture and self-shading regimes that respond to changes in light regimes.  相似文献   

3.
Leaf spacing and aboveground growth were monitored in saplings of ten species in a range of light environments in a Panamanian lowland humid forest. One- to 2-m-tall individuals of the chosen species had intermediate to large leaves on stems with few or no branches. Saplings in high light environments grew faster in height and produced more biomass per unit leaf area than shaded saplings for all species. These growth responses involved morphological plasticity with greater extension per unit biomass increment increasing the height growth rate of gap-grown saplings and greater biomass allocation to leaves decreasing the whole plant light compensation point in shade. The relative performance of the species also varied across the light gradient and was related to differences in leaf lifespan and specific leaf mass. Light-demanding species grew as rapidly in shade as shade-tolerant species, but the shorter leaf lifespan of the former necessitates higher production rates to maintain a given leaf area, largely excluding light-demanders from shaded understory locations. Height growth rate was positively correlated with leaf spacing for each species, and differences between species in the height growth rate-internode length relationship were related to interspecific differences in specific leaf mass. Thus, sapling growth histories may be inferred from their morphologies.  相似文献   

4.
不同光环境下木荷幼苗树冠结构的可塑性响应   总被引:1,自引:0,他引:1  
从冠形、侧枝和叶片在树冠中的空间分布等方面对天然更新木荷(Schima superba Gardn.et Champ.)幼苗的树冠结构进行了研究,认为木荷幼苗的树冠对光照条件的变化有显著的可塑性响应。随着光照水平的提高,幼苗树冠由阔、松散型向相对紧密、窄冠型发展,表明木荷幼苗对不同光照环境有较强的适应能力。木荷幼苗在强光环境下产生短枝,在适度荫庇条件下侧枝和主枝同时向上方和侧方伸长生长;在强度遮阴条件下,侧枝发生强烈的伸长生长并发生强烈的分枝行为,同时在不同自然环境条件下幼苗的叶片密度由全光、林隙到林冠下逐渐提高。随着光照水平的减弱,1级侧枝密度逐渐降低,分枝(2级侧枝和3级侧枝)强度却逐渐增大,且侧枝在树冠上的分布有向匕集中的趋势。  相似文献   

5.
Baltzer JL  Thomas SC 《Oecologia》2007,153(2):209-223
A range of traits, including metabolic costs, biomass allocation and seed reserves, may contribute to interspecific variation in the shade tolerance of tree seedlings. In addition, shade tolerance may be affected by differential responses of species to soil resource availability at low light. We used a custom-built whole-plant gas-exchange chamber to quantify instantaneous whole-plant light compensation point (WPLCP) and to parameterize whole-plant daily C gain models for seedlings of eight temperate deciduous tree species. We examined the relationship of WPLCP to growth, biomass allocation and gas-exchange under high and low light and nutrient availabilities and compared it to WPCLP of naturally recruited saplings. For species showing a response, both increased light and nutrient availability resulted in increased WPLCP. However, species’ responses to resource availability did not correspond closely with shade tolerance as has generally been predicted. Variation in WPLCP within species was best predicted by whole-plant dark respiration rates, leaf-level light compensation point and leaf mass per area. Among species, seed size was a strong negative correlate of WPLCP, explaining 66% of the variation. Species with the lowest WPLCP maintained lower growth rates across treatments but greater biomass in the low-light treatment compared with more light-demanding species. These data suggest that a number of traits, in particular metabolic costs and seed size, contribute to WPLCP. However, gas-exchange-based WPLCP was 1.5–3.5 times lower than corresponding growth-based field estimates of WPLCP, suggesting that other factors such as biotic interactions or ontogenetic shifts in whole-plant light requirements may substantially increase species’ WPLCP under natural conditions.  相似文献   

6.
Plants exhibit higher leaf-to-root ratios (L/R) and lower leaf nitrogen content (N area) in low-light than in high-light environments, but an ecological significance of this trait has not been explained from a whole-plant perspective. This study aimed to theoretically and experimentally demonstrate whether these observed L/R and N area are explained as optimal biomass allocation that maximize whole-plant relative growth rate (RGR). We developed a model which predicts optimal L/R and N area in response to nitrogen and light availability. In the model, net assimilation rate (NAR) was determined by light-photosynthesis curve, light availability measured during experiments, and leaf temperature affecting the photosynthesis and leaf dark respiration rate in high and low-light environments. Two pioneer trees, Morus bombycis and Acer buergerianum, were grown in various light and nitrogen availabilities in an experimental garden and used for parameterizing and testing the model predictions. They were grouped into four treatment groups (relative photosynthetic photon flux density, RPPFD 100% or 10%×nitrogen-rich or nitrogen-poor conditions) and grown in an experimental garden for 60 to 100 days. The model predicted that optimal L/R is higher and N area is lower in low-light than high-light environments when compared in the same soil nitrogen availability. Observed L/R and N area of the two pioneer trees were close to the predicted optimums. From the model predictions and pot experiments, we conclude that the pioneer trees, M. bombycis and A. buergerianum, regulated L/R and N area to maximize RGR in response to nitrogen and light availability.  相似文献   

7.
不同光环境下紫椴幼树树冠结构的可塑性响应   总被引:20,自引:1,他引:19  
从冠形、侧枝和叶片在树冠中的空间分布角度对天然更新紫椴幼树的树冠结构进行了论述,认为紫椴幼树树冠对光照条件的变化有显著的可塑性响应.强光通过抑制主干的生长促进了侧枝的分化,庇荫则通过抑制1级侧枝的生长促进了侧枝的再分枝.随着光照水平的降低,紫椴幼树的数量叶片密度显著降低,且叶片逐渐集中于冠上层.林冠下的紫椴幼树通过这种侧枝和叶片的分布格局,在形态上提高其对光的截获能力在适度庇荫环境中,紫椴幼树垂直生长采取演替先锋种的"避荫”对策,侧枝生长采取中等耐荫种的"掠光”对策;在弱光环境中,紫椴幼树则采取典型的忍耐适应行为.这种树冠结构的变化是提高紫椴幼树对光的截获能力的一种有益适应.  相似文献   

8.
Poorter  Lourens  Arets  Eric J.M.M. 《Plant Ecology》2003,166(2):295-306
Light partitioning is thought to contribute to the coexistence of rain forest tree species. This study evaluates the three premises underlying the light partitioning hypothesis; 1) there is a gradient in light availability at the forest floor, 2) tree species show a differential distribution with respect to light, and 3) there is a trade-off in species performance that explains their different positions along the light gradient. To address these premises, we studied the light environment, growth, and survival of saplings of ten non-pioneer tree species in a Bolivian moist forest. Light availability in the understorey was relatively high, with a mean canopy openness of 3.5% and a mean direct site factor of 6.8%. Saplings of two light demanding species occurred at significantly higher light levels than the shade tolerant species. The proportion of saplings in low-light conditions was negatively correlated with the successional position of the species. Light-demanding species were characterised by a low share of their saplings in low-light conditions, a high sapling mortality, a fast height growth and a strong growth response to light. These data show that all three premises for light partitioning are met. There is a clear gradient in shade-tolerance within the group of non-pioneer species leading to a tight packing of species along the small range of light environments found in the understorey. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol–1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol–1 year–1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.  相似文献   

10.

Key message

Factors influencing branch growth differed between a qualitative element (whether a branch grows) and a quantitative element (the amount of biomass accretion).

Abstract

We measured branch growth in saplings of four evergreen broad-leaved tree species growing in a temperate Japanese forest. A hierarchical Bayesian approach was used to model two elements of branch growth: a qualitative component [whether branches produce new annual shoots (ASn)] and a quantitative component (total ASn mass). The two components were influenced by somewhat different factors. The probability that a branch would produce ASn was affected by the total mass of previous-year annual shoots (total ASn–1 mass), branch age, relative branch height, canopy openness measured at the branch tip, maximum canopy openness within a single sapling, and the interaction between canopy openness and maximum canopy openness. The total ASn mass was influenced by the total ASn–1 mass, relative branch height, branch inclination, and maximum canopy openness. These two components of branch growth should be considered separately when tree architecture is modeled. In addition, we detected interactive responses among branches within individual saplings. The relative importance of interactive modular response and branch autonomy may differ depending on the status of plants, such as individual age, environmental conditions, and the timing of the measurements. We found considerable similarities in the responses of branch growth to the internal and environmental factors among the species studied. We also found some among-species differences in branch growth responses to the explanatory variables measured.  相似文献   

11.
The ability of saplings to tolerate browsing (i.e. the ability to persist with reduced biomass and to compensate for biomass loss) is influenced by the level of stress and their growth strategies. Ultimately, insight into species‐specific responses of saplings to browsing, shade and competition from neighbours will help explain diversity, structure and function of grazed ecosystems such as the endangered wood‐pasture systems. We measured the survival, whole‐sapling biomass and compensatory growth responses of two coniferous (Picea abies and Abies alba) and two deciduous (Acer pseudoplatanus and Fagus sylvatica) tree species to simulated summer browsing (one single clipping event), shade (installation of a shade cloth) and neighbour removal (mowing surrounding vegetation to ground level) treatments and the interactions between them after two‐growing seasons. For all species, there were interacting effects on growth of browsing and environmental condition (shade and neighbours). Simulated browsing resulted in relatively smaller growth losses when plants were growing slowly due to competitive conditions related to herbaceous neighbours. Although none of the clipped saplings could fully compensate for their biomass losses, the saplings were closer to compensation under high competitive conditions than under low competitive conditions. Survival of the clipped saplings remained relatively high and was only significantly reduced for Picea and Acer. Picea was least tolerant of competition and was the only species for which growth was not negatively affected by strong irradiance of a mountain pasture. Surprisingly, the tolerance of saplings to herbivory as browsing tolerance was enhanced under conditions that negatively affected sapling performance (i.e. survival and growth). Apparently, the relative impact of browsing at the early sapling stage is linked to tree life history characteristics such as competition and shade tolerance and will be lower in situations with intense competitive interactions and/or strong irradiance.  相似文献   

12.
Patterns of physiological and architectural adaptation and acclimation to decreasing light availability were investigated along a light gradient for saplings of 12 common species of temperate deciduous trees in southeastern Ontario, Canada. Physiological adaptation and acclimation (shade tolerance physiology) were quantified at the leaf level by measuring leaf mass per unit area (LMA), dark respiration per unit leaf nitrogen, chlorophyll per unit leaf nitrogen and the chlorophyll a:b ratio for the newest fully expanded leaf on the leader. Architectural adaptation and acclimation (shade avoidance) were quantified by measuring branching intensity and side shoot:main shoot length ratios for the most recent three years of growth on the leader and selected side branches. Within species, increases in LMA, chlorophyll a:b ratio and respiration per unit nitrogen and decreases in chlorophyll per unit nitrogen indicated that shade tolerance physiology generally increased with decreasing canopy openness. Increases in the branching intensity and side shoot:main shoot ratios of the leader and side branches indicated that shade avoidance also increased with decreasing canopy openness for the majority of species; however, in some species, stem bending under deep shade resulted in lateral growth. Interspecific variation in shade tolerance physiology was minimal when species were compared under equal amounts of canopy openness. In contrast, interspecific variation in shade avoidance variables was relatively high under equal canopy openness, with saplings of shade tolerant canopy species exhibiting higher shade avoidance than saplings of shade tolerant understory species.  相似文献   

13.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

14.
A growth analytical study is made on the seedlings ofAbies mariesii Mast. andAbies veitchii Lindl. in the subalpine climaxAbies forests of the northern Yatsugatake Mountains, central Japan. Seedlings are distinguished from saplings by the absence of the fully expanded lateral branch system. The high dependence of assimilation on new needles characterizes the lives of seedlings. Leader shoots of seedlings, resembling not leader shoots but lateral branch shoots of saplings, have shoot characters adaptive for assimilation. Seedlings grow into saplings at 20 cm in height and 5 g in dry weight. The matter-economic analysis suggests the existence of a boundary growth rate below which an individual cannot maintain the needle amount requisite for its survival (called the critical growth rate) and that above which an individual can easily enter the sapling stage due to higher allocation of assimilate to roots and aged trunk stem (the capacity growth rate). Forest floor seedlings suffer, a high mortality during their initial several years and scarcely grow to enter the sapling stage, because of the scantiness of their matter production. In the regeneration patterns of subalpineAbies forests, both the seedling bank type and the sapling bank type are recognized.  相似文献   

15.
We examined the effects of light availability on the suitability of foliage from red maple (Acer rubrum L.) (Aceraceae), black cherry (Prunus serotina Ehrhart) (Rosaceae), and sassafras [Sassafras albidum (Nuttall) Nees (Lauraceae)] for the larvae of the promethea moth, Callosamia promethea Drury (Lepidoptera: Saturniidae), in midseason. We identified replicate sun- and shade-grown saplings of red maple, black cherry, and sassafras from naturally growing populations in the field. Foliage collected from the experimental saplings was bioassayed using early instars of the promethea moth and assayed for nitrogen and carbon content. Promethea moth-larval performance and survivorship was highest on sassafras, intermediate on black cherry, and lowest on red maple. Larvae feeding on foliage from plants grown in the sun performed better than from those grown in the shade; the effect of light did not depend on sapling species. Foliar nitrogen content varied among the sapling species and was higher, overall, in foliage from plants grown in the sun. Nitrogen concentration related strongly and positively with larval performance and accounted for a great deal of the variation in performance both among the sapling species and between the sun and shade treatments. During midseason, foliar nitrogen content is determined by light availability, it varies among sapling species, and it is likely the primary constituent determining host quality for folivores on these sapling species.  相似文献   

16.
1. The spacing of branches along central stems was related to growth rate and light level in forest saplings and trees in tropical moist forest on Barro Colorado Island (BCI), Panama. The study included 14 species with tiers of plagiotropic branches (having planar leaf arrangements) and four species with continuous distributions of plagiotropic branches.
2. All species showed increases in branch spacing with increasing light and growth rate of diameter, similar to the patterns in leaf spacing noted previously in species which initially bear large leaves on unbranched stems.
3. Non-tiered species had shorter internodes than tiered species but because the latter bear more branches per node, both groups had similar numbers of branches per unit stem length, when compared at similar growth rates.
4. Differences in the relationship between internode length and growth rate among tiered species were related to demographic characteristics, suggesting that tree architecture may influence forest composition.
5. The strong correlation observed between branch spacing and growth rate suggests that branch spacing may be used to estimate past growth histories of forest tree species with plagiotropic branches.  相似文献   

17.
The combined effects of partial defoliation and nutrient availabilityon dry matter accumulation and partitioning, and on nitrogenuptake and partitioning, were studied in cloned Betula pendulaRoth saplings. The saplings were randomly assigned to differentnutrient levels (5, 1·5 and 0·5 mol Nm–3)in aerated nutrient culture and to the following defoliationtreatments: (1) control (no damage), (2)damage of the developingmain stem leaves (half of the leaf lamina removed), and (3)removalof the developing main stem leaves (entire leaf lamina removed).Measured in terms of cumulative whole-plant dry weight (includingremoved leaf tissue), the birch saplings were unable to compensatefor the loss of the developing leaves (treatment 3) during the14 d study period. In response to leaf removal (treatment 3)the mean final percentage reduction in whole-plant dry weightwas actually greater than the initial mean percentage reductioncaused by the removal itself; the magnitude of the final reductionwas independent of nutrient availability. After removal of thedeveloping leaves, branch growth was favoured at the expenseof the growth of the rest of the shoot; the relative branchgrowth was most pronounced at the highest nutrient level. Atthe two highest nutrient levels the nitrogen uptake of the saplingswith the developing leaves removed was less than that of undamagedsaplings. We suggest, however, that the incapacity of the saplingsfor compensatory growth after removal of the developing leaveswas primarily due to the decreased total carbon gain of thesaplings rather than to the decreased nitrogen uptake rate. Key words: Partial defoliation, nutrient availability, birch sapling, dry matter, nitrogen  相似文献   

18.
Lin J  Harcombe PA  Fulton MR  Hall RW 《Oecologia》2004,139(3):399-407
We investigated the effects of light and flooding on growth and survivorship of saplings in a river floodplain forest of southeast Texas. Growth responses to light were consistent with the expectation that shade-intolerant species grow faster than shade-tolerant species in high light, and vice versa. Mortality risk was not associated with shade tolerance level unless high mortality risks associated with a period of high flooding were removed. These results support the hypothesis that shade-tolerant species in floodplains may be limited by flooding as previous studies suggested. Also, compared to their performance at a nearby mesic site, common species showed little intraspecific difference in shade tolerance, especially for shade-intolerant species. Finally, the positive correlation between low-light growth and survivorship suggests that carbon allocation to continued growth may be favored as a sapling strategy in floodplains.  相似文献   

19.
Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth rates may be important in evaluating the patterns of biomass allocation in the understory.  相似文献   

20.
黄一鑫  程艳霞 《生态学报》2022,42(22):9121-9129
在林窗、林缘、林下3种自然光环境下,对吉林蛟河阔叶红松林常见树种拧筋槭、白牛槭、色木槭和红松的光合和光谱特性进行对比研究,以期从生理生态角度探讨它们对自然光环境的适应能力和响应机制。结果表明:4种乔木幼树叶片的光饱和点(LSP)和光补偿点(LCP)随着生长环境光强的下降而减小,林下各树种幼树LSP和LCP显著低于林窗内幼树(P<0.05);除白牛槭外林下其他树种最大净光合效率(Pnmax)均显著小于林窗内幼树(P<0.05);不同树种幼树表观量子效率(AQY)和暗呼吸速率(Rd)随光环境的变化并没有出现明显的变化规律,各环境间差异较小。除白牛槭外,其他树种幼树叶绿素归一化指数(Chl NDI)随环境光强的减少而增大,林下树种的光化学反射指数(PRI)普遍高于光条件更好环境下树种,说明林下幼树叶片叶绿素含量和光合速率大于其他光环境;各树种植物叶片水分指数(WI)在不同光环境之间存在显著差异,环境光强越大植物叶片WI越小,植物叶片水分浓度越小。林缘下3种槭属幼树结构不敏感植被光谱指数(SIPI)显著小于其他光环境(P<0.05)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号