首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coho Salmon Oncorhynchus kisutch show fidelity to natal spawning watersheds. Fine-scale homing, however, within rivers is not well understood. Interior Fraser Coho (IFC) salmon eggs were incubated at known spawning locations in the Coldwater River, two main stem sites and one-off channel pond site, providing otolith reference data for comparison to otolith signatures for returning adults using laser ablation inductively coupled plasma mass spectrometry. Elemental ratios for Ba:Ca and Sr:Ca in otoliths of juvenile O. kisutch differed significantly among the spawning locations examined. Juvenile otolith data were used to conduct a linear discriminant analysis to assess fine-scale homing in adults. Juvenile data were all assigned to the location where they had been incubated, producing a robust data set used to compare adult otoliths and define natal locations based on elemental signatures in otoliths of adult spawners. Homing and straying were apparent at the reach level; 57.1% of adults returned to their natal spawning locations, while 42.9% strayed to other spawning sites within the Coldwater River. Straying to novel incubation sites at the reach scale demonstrated plasticity in homing within a watershed.  相似文献   

2.
We evaluated reproductive isolation of Chinook salmon (Oncorhynchus tshawytscha) life history types that have been reintroduced to northern Idaho, USA. Analysis of 1003 samples at six microsatellite loci revealed strong reproductive isolation between ocean- and stream-type Chinook salmon (fall and summer spawn timing, respectively) within the Clearwater River sub-basin (F ST = 0.148, P < 0.00001). Very little evidence for gene flow among the two life history types was observed as assignment tests correctly assigned 99.6% of individuals in reference collections to either ocean- and steam-type Chinook salmon. Assignment of naturally reared juveniles indicated that both life history types were present with 24.1% stream-type and 75.9% ocean-type. Previous studies suggest high levels of divergence among the two life history types in natural populations, and our study verifies the persistence of reproductive isolation among types following colonization of habitat. Successful colonization of new habitat by (re)introduced species is likely influenced by diversity in life history types and this strategy has lead to naturally spawning populations in a variety of available habitats in the Clearwater River. As many populations of O. tshawytscha are listed as threatened or endangered under the U.S. Endangered Species Act, hope for recovery lies not only in effective management and habitat improvement, but adaptability of this species.  相似文献   

3.
In 1997 the Cle Elum Supplementation Research Facility was established to enhance spring Chinook salmon returning to the upper Yakima River, Washington State. This effort increased spring Chinook abundance, yet conditions at the hatchery also significantly elevated the occurrence of jacks and yearling precocious males. The potential genetic effect that a large influx of early maturing males might have on the upper Yakima River spring Chinook population was examined in an artificial stream. Seven independent groups of fish were placed into the stream from 2001 through 2005. Males with four different life history strategies, large anadromous, jacks, yearling precocious, and sub-yearling precocious were used. Their breeding success or ability to produce offspring was estimated by performing DNA-based pedigree assessments. Large anadromous males spawned with the most females and produced the greatest number of offspring per mate. Jacks and yearling precocious males spawned with more females than sub-yearling precocious males. However, jacks, yearling and sub-yearling precocious males obtained similar numbers of fry per mate. In the test groups, large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry. These percentages remained stable even though the proportion of large anadromous males in the test groups ranged from 48% to 88% and tertiary sex ratios varied from 1.4 to 2.4 males per female. Our data suggest that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy.  相似文献   

4.
Recent declines in many chinook salmon, Oncorhynchus tshawytscha, populations within the Columbia River watershed have prompted an examination of their reproductive biology. In a previous study many female fall chinook salmon collected in 1999 from the Hanford Reach of the Columbia River tested positive for a male-specific DNA marker (OtY1) found on the Y chromosome. The purpose of this study was to determine if females testing positive for the OtY1 marker could be found in other populations of fall chinook salmon from the Columbia River, and to assess the prevalence of OtY1 incidence in different female cohorts. Post-spawned male and female fall chinook salmon from three different naturally spawning populations (Hanford Reach, Yakima River and Ives Island) and one hatchery population (Priest Rapids Hatchery) on the Columbia River were tested in 2000 and 2001 for the OtY1 marker. Among naturally spawning populations, 57.4% of the females tested positive from the Hanford Reach, 33.3% tested positive from the Yakima River, and 32.5% tested positive from Ives Island. Of the Priest Rapids Hatchery fish, 62.5% of the females tested positive, and significant differences were detected between the 1995–1996 and 1997–1998 female cohorts from this population. No significant differences were detected between any of the female cohorts from the naturally spawning populations. All male chinook salmon samples, tested positive for OtY1.  相似文献   

5.
Growth, age structure, sexual maturation, and peculiarities of the life history strategy adoption were studied for the population of masu salmon Oncorhynchus masou inhabiting the Kol River, Western Kamchatka. The growth rate and gametogenesis depended on the peculiarities of masu salmon generations in certain years and were the limiting factors for the juvenile differentiation and the direction of its ontogenetic development. The adoption of the resident or anadromous life history strategy in masu salmon is the epigenetic process, and the bifurcation during the life span of a single specimen is observed only once in a life, but twice in the generation, at the age of 1+ or 2+. The diversity of the life history strategy patterns was less at the northern boundary of the geographical range of masu salmon compared to the area of ecological optimum (the basin of the Sea of Japan). In the Kol River basin, nearby the northern boundary of its geographical range, the reproductive success and formation of the life history strategy diversity in the population depended strictly on the temperature regime of the water bodies, where the spawning and the freshwater period of life cycle of masu salmon take place. In Kamchatka, all the breeders were monocyclic, i.e. anadromous and resident precocious males spawned only once in a life.  相似文献   

6.
Previous studies of population genetic structure of fall‐run chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley have either not focused on or have been unable to resolve intertributary differences within the San Joaquin River basin. The authors describe the isolation, the polymerase chain reaction conditions, and characterize the cross‐species amplification of 17 microsatellite loci in six species of salmonids. Fourteen of these loci are polymorphic in fall‐run chinook from the San Joaquin River drainage. These results indicate the potential utility of microsatellite markers developed for one species, for both congenerics and species within a closely related genus.  相似文献   

7.
In 47 families of New Zealand chinook salmon, Oncorhynchus tshawytscha derived from two populations, differing in mean spawning date by 11–17 days and in juvenile life history, neither mean ovum weight nor mean time to hatch differed between the two populations, but substantial differences in mean family weight were apparent from 6 months after fertilization. Differences in growth rates from 12 to 24 months were relatively small, suggesting that most of the divergence in size and growth occurred during the first 6 months of life. There were differences in mean weight for families spawned 11–17 days apart, the approximate interval by which peak spawning date differs between the two populations, but these did not persist beyond 7 months. Differences between the two populations are consistent with their natural life history. The slower growing population experiences cooler temperatures during stream residence and is dominated by fish which spend a year in fresh water before seaward migration, whereas the faster growing population normally experiences warmer temperatures and migrates to sea in the first year of life. These results provide further evidence of life history evolution in partially isolated chinook salmon populations within 90 years ( c. 30 generations) of becoming established.  相似文献   

8.
Supplementation of young raised at a protected site, such as a hatchery, may influence the effective population size of an endangered species. A supplementation program for the endangered winter-run chinook salmon from the Sacramento River, California, has been releasing fish since 1991. A breeding protocol, instituted in 1992, seeks to maximize the effective population size from the captive spawners by equaling their contributions to the released progeny. As a result, the releases in 1994 and 1995 appear not to have decreased the overall effective population size and may have increased it somewhat. However, mistaken use of non-winter-run chinook spawners resulted in artificial crosses between runs with a potential reduction in effective population size, and imprinting of the released fish on Battle Creek, the site of the hatchery, resulted in limiting the contribution of the released fish to the target mainstem population. Rapid genetic analysis of captured spawners and a new rearing facility on the Sacramento River should alleviate these problems and their negative effect on the effective population size in future years.  相似文献   

9.
Increasing concern has been expressed about the genetic effects of cultured salmonid fishes on natural populations. Avoidance of extreme negative outcomes was one reason for the establishment of a genetic management policy for the State of Alaska. However, domestication within the hatchery may still cause divergence from the wild donor population. This divergence could potentially lead to adverse impacts on wild stocks through straying and introgression. This study examines potential domestication in two Alaskan chinook salmon stocks. The Little Port Walter (LPW) Hatchery Chickamin River stock resulted from a small collection of wild broodstock in 1976. The LPW Unuk stock was founded with a larger number of individuals in 1976 and has had subsequent infusion of wild gametes. These lines have been maintained at LPW through ocean ranching of tagged smolts. Comparisons are made between the hatchery lines, progeny of wild chinook collected from the Chickamin and Unuk Rivers, and hybrids between the hatchery and wild groups. Mature ocean‐ranched female chinook salmon returning to the facility were periodically graded for ripeness and spawned. Body size and meristic measurements were collected from these mature spawners. Maturation timing, fecundity, and individual egg size of these fourth generation hatchery fish are compared with that of offspring of wild fish from the same donor stock. Stock of origin is confirmed for all spawners and offspring using microsatellite DNA analysis.  相似文献   

10.
Biological features of chinook salmon Oncorhynchus tshawytscha from the Apuka River, the largest river of the northeastern Kamchatka inflowing Olyutorskii Bay of the Bering Sea, are studied. Chinook salmon from the Apuka River spend mainly a year in the river before downstream migration to the sea. The fish live in the sea for 1–4 years. The spawning migration of chinook salmon into the Apuka River begins in late May just after ice melting, and it continues until early August. The main part of the spawners enters the river during June. A hypothesis on the occurrence of two seasonal races in the Apuka River is proposed.  相似文献   

11.
Increasing concern has been expressed about the genetic effects of cultured salmonid fishes on natural populations. Avoidance of extreme negative outcomes was one reason for the establishment of a genetic management policy for the State of Alaska. However, domestication within the hatchery may still cause divergence from the wild donor population. This divergence could potentially lead to adverse impacts on wild stocks through straying and introgression. This study examines potential domestication in two Alaskan chinook salmon stocks. The Little Port Walter (LPW) Hatchery Chickamin River stock resulted from a small collection of wild broodstock in 1976. The LPW Unuk stock was founded with a larger number of individuals in 1976 and has had subsequent infusion of wild gametes. These lines have been maintained at LPW through ocean ranching of tagged smolts. Comparisons are made between the hatchery lines, progeny of wild chinook collected from the Chickamin and Unuk Rivers, and hybrids between the hatchery and wild groups. Mature ocean‐ranched female chinook salmon returning to the facility were periodically graded for ripeness and spawned. Body size and meristic measurements were collected from these mature spawners. Maturation timing, fecundity, and individual egg size of these fourth generation hatchery fish are compared with that of offspring of wild fish from the same donor stock. Stock of origin is confirmed for all spawners and offspring using microsatellite DNA analysis.  相似文献   

12.
The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.  相似文献   

13.
Effective size of fluctuating salmon populations   总被引:6,自引:0,他引:6  
Waples RS 《Genetics》2002,161(2):783-791
Pacific salmon are semelparous but have overlapping year classes, which presents special challenges for the application of standard population genetics theory to these species. This article examines the relationship between the effective number of breeders per year (N(b)) and single-generation and multigeneration effective population size (N(e)) in salmon populations that fluctuate in size. A simple analytical model is developed that allows calculation of N(e) on the basis of the number of spawners in individual years and their reproductive contribution (productivity) to the next generation. Application of the model to a 36-year time series of data for a threatened population of Snake River chinook salmon suggests that variation in population dynamic processes across years reduced the multigeneration N(e) by approximately 40-60%, and reductions may have been substantially greater within some generations. These reductions are comparable in magnitude to, and in addition to, reductions in N(b) within a year due to unequal sex ratio and nonrandom variation in reproductive success. Computer simulations suggest that the effects of variable population dynamics on N(e) observed in this dataset are not unexpected for species with a salmon life history, as random variation in productivity can lead to similar results.  相似文献   

14.
The Hudson River estuary supports substantial number of Atlantic sturgeon, Acipenser oxyrinchus, and shortnose sturgeon, Acipenser brevirostrum. Both species have complex life cycles that have been studied sporadically in the past 50 years. The life cycle of the shortnose sturgeon may be divided into four life intervals: non-spawning adults, spawning adults, eggs and larvae, and juveniles. The life cycle of the Atlantic sturgeon is reviewed in six intervals: non-spawning adults, female spawners, male spawners, eggs and larvae, early juveniles, and late juveniles. Both species are long-lived, mature at advanced age, have rapid and similar growth during the first few years of life, feed on generally similar taxa, use deep channel habitats for all life intervals, and have complex migratory patterns with distinct, seasonal, concentration areas. Atlantic and shortnose sturgeons differ, however, in ages and sizes at maturity, maximum size, timing and location of spawning, migratory behaviors, and management. Use of marine habitats and long-distance coastal migrations are restricted to Atlantic sturgeon, but some evidence indicates that large Atlantic sturgeon juveniles reside in riverine habitats along the Atlantic coast during warm months. Movements and habitat use by both sturgeons in the Hudson River estuary contrasts with the spatial segregation of the species reported in other river systems. Juvenile shortnose sturgeon and early juvenile Atlantic sturgeon have almost the same distributions in the Hudson River estuary during all seasons. During this period of co-occurrence, both species are very similar in size, grow at about the same rate, feed on similar foods, and share deep, channel habitats. Adult shortnose sturgeon distribution overlaps with the distribution of juvenile Atlantic sturgeon, and the latter commence river emigration at a size comparable to co-occurring adult shortnose sturgeon. Life history information on the Hudson River sturgeons substantiates the need to carefully conserve these species because of vulnerability to exploitation and habitat disruption.  相似文献   

15.
Variation in early life history traits often leads to differentially expressed morphological and behavioral phenotypes. We investigated whether variation in egg size and emergence timing influence subsequent morphology associated with migration timing in juvenile spring Chinook Salmon, Oncorhynchus tshawytscha. Based on evidence for a positive relationship between growth rate and migration timing, we predicted that fish from small eggs and fish that emerged earlier would have similar morphology to fall migrants, while fish from large eggs and individuals that emerged later would be more similar to older spring yearling migrants. We sorted eyed embryos within females into two size categories: small and large. We collected early and late‐emerging juveniles from each egg size category. We used landmark‐based geometric morphometrics and found that egg size appears to drive morphological differences. Egg size shows evidence for an absolute rather than relative effect on body morphology. Fish from small eggs were morphologically more similar to fall migrants, while fish from large eggs were morphologically more similar to older spring yearling migrants. Previous research has shown that the body morphology of fish that prefer the surface or bottom location in a tank soon after emergence also correlates with the morphological variations between wild fall and spring migrants, respectively. We found that late‐emerging fish spent more time near the surface. Our study shows that subtle differences in early life history characteristics may correlate with a diversity of future phenotypes.  相似文献   

16.
Management and restoration planning for Pacific salmon is often characterized by efforts at broad multi-basin scales. However, finer-scale genetic and phenotypic variability may be present within individual basins and can be overlooked in such efforts, even though it may be a critical component for long-term viability. Here, we investigate Chinook salmon (Oncorhynchus tshawytscha) within the Siletz River, a small coastal watershed in Oregon, USA. Adult Chinook salmon were genotyped using neutral microsatellite markers, single nucleotide polymorphisms and “adaptive” loci, associated with temporal variation in migratory behavior in many salmon populations, to investigate genetic diversity based upon both spatial and temporal variation in migratory and reproductive behavior. Results from all three marker types identified two genetically distinct populations in the basin, corresponding to early returning fish that spawn above a waterfall, a spring-run population, and later returning fish spawning below the waterfall, a fall-run population. This finding is an important consideration for management of the species, as spring-run populations generally only have been recognized in large watersheds, and highlights the need to evaluate population structure of salmon within smaller watersheds, and thereby increase the probability of successful conservation of salmon species.  相似文献   

17.
Atlantic salmon Salmo salar are often heavily infected by the gill maggot Salmincola salmoneus, but little information exists on the population dynamics of this parasite. Through a combination of in vivo field examination and laboratory analysis of gills from the Alta River S. salar population in northern Norway, we describe the population dynamics of the parasite and suggest a model for the host-parasite interactions. S. salar did not become infected with S. salmoneus until they returned to the river as first-time spawners. The infection increased rapidly until autumn, and just after spawning 96% of the spent fish (kelts) were infected with a mean intensity of 53 parasites per fish. In May, the prevalence of S. salmoneus on the descending kelts had increased to 100%, but the intensity exhibited little change. A small proportion of the adult S. salar population returned as immature to the river during autumn and had lower parasite intensities than the kelts the following spring. When the fish that had spawned previously (repeat spawners) returned from their second (or more) sea migration, they had an average infection rate of 36 S. salmoneus individuals per fish. The kelts seemed to be the main habitat for the parasite during winter and spring, and they stay long enough in the river to pass the infection to maiden S. salar that enter the river early in summer. These fish then became a source of infection for the maiden fish entering the river later. However, in years that have a possible mismatch between the opposite migration of kelts and maiden S. salar, the immature fall-running and returning repeat spawners will be crucial for maintaining the parasite population. We hypothesize that heavily infected S. salar may suffer reduced growth and survival at sea, potentially reducing the abundance of repeat spawners.  相似文献   

18.
The Winnebago System, Wisconsin, is home to one of the largest Lake Sturgeon Acipenser fulvescens populations in North America. Although there are >50 known spawning sites utilized by Lake Sturgeon in the 200 km of the lower Wolf River upstream of Lake Winnebago, the construction of two dams >90 years ago eliminated the ability of Lake Sturgeon to access 18.5 km of river up to their ancestral spawning grounds below Keshena Falls. Given the cultural importance of sturgeon to the Menominee Indian Tribe of Wisconsin, expanded efforts aimed at restoring Lake Sturgeon spawning and a resident population to the upper Wolf River commenced in 2011. To meet these objectives, 100 or more Lake Sturgeon per year were captured below the dams, and transferred upstream to the Wolf River within the Menominee Reservation. All transferred fish were PIT tagged and 245 fish were surgically implanted with 10 year acoustic transmitters to determine spawning locations and monitor post‐release movement. The first five transfer cohorts contained 621 Lake Sturgeon, with spawning activity observed below Keshena Falls each spring following release. Gravid fish transferred within 3 weeks of spawning exhibited higher spawning rates above the upstream dam (70.2% females; 73.9% males) than gravid fish transferred in late fall (41.8% females; 41.2% males). Spawning documented below Keshena Falls and within the Red River represent the first spawning activity at these locations in >100 years. Lake Sturgeon transferred in early fall displayed higher retention rates, 2‐5 years post‐tagging, in the pool upstream of both dams (10.4%) compared to the late fall (3.1%) and spring transfers (7.4%). Natural reproduction was documented through capture of larval Lake Sturgeon immediately below Keshena Falls in 2013. These results demonstrate that capture and transfer can be utilized as a cost‐effective and biologically‐effective tool for Lake Sturgeon spawning stock and population restoration.  相似文献   

19.
Trace element and fork length ( L F) frequency analyses of eulachon Thaleichthys pacificus otoliths were used to determine age at maturity and repeat spawning potential, two aspects of eulachon life history that are not known but are important for successful management of this species. The L F-frequency analysis for ocean caught and spawning eulachon was used to estimate age at maturation. Two size classes of eulachon were caught in the ocean and spawning eulachon were consistently the largest fish indicating that spawners from mid-coast of British Columbia were 3 years old. Laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) was also used to reconstruct the Ba:Ca and Sr:Ca molar ratios deposited spatially into the otolith to estimate spawner age for five populations of eulachon. Age at maturation differed among populations examined. Based on the seasonal fluctuations in Ba:Ca molar ratios caused by seasonal upwelling of deep waters, it was determined that more southerly populations spawned at a younger age than the northern populations examined. Southern populations of eulachon, Columbia River, Washington, U.S.A., spawn after 2 years. Eulachon from the Fraser, Kemano and Skeena Rivers in British Columbia, Canada, generally mature after 3 years. Some Skeena River eulachon and most of the eulachon from the Copper River, Alaska, U.S.A., matured after 4 years. In contrast to the Ba:Ca molar ratios in the otolith, Sr:Ca molar ratios maintained a relatively flat profile over the life of the eulachon. The lack of a change in Sr:Ca ratios within the otolith, the single size class of spawners across all systems and the single age class within most populations strongly suggest that eulachon in the present study are semelparous.  相似文献   

20.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号