首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract: Fertilization levels for ornamental crops may influence pest population dynamics, crop quality, and pest management strategy. We examined the effect of fertilization on population growth and within‐plant distribution of melon or cotton aphid, Aphis gossypii Glover, on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). In terms of pest management implications, we also investigated the effect of fertilization on the number of insecticide applications needed to control A. gossypii on potted chrysanthemum. Population growth rate of A. gossypii increased with fertilization levels from 0 to 38 ppm N and reached a plateau from 38 to 488 ppm N. Increased fertilization beyond 38 ppm N, 10% of the commercial standard, did not result in higher aphid number. Aphids responded to nutrient availability of plants by distributing themselves in areas with higher level of nitrogen. More aphids were found in the apical and middle strata of the plants than the basal stratum, which had the lowest nitrogen content. Leaf nitrogen content increased with increased fertilization level and was consistently higher in the apical and middle strata than the basal stratum. Increased fertilization from 0 to 375 ppm N did not result in higher number of insecticide applications. All three insecticides (bifenthrin, kinoprene or pymetrozine) were effective in keeping the aphid infestation below a pre‐determined level, five aphids per plant, but pymetrozine required the least number of applications. For chrysanthemum, a fast‐growing crop and heavy utilizer of nitrogen, increased fertilization shortened the time to flowering, which would allow growers to harvest their crop sooner and reduce the time for aphid population growth. Reduction in time to harvest could result in significant reduction of insecticide usage by reducing the time for aphid population growth. As a result, high fertilization together with minimal runoff may be a useful tactic to an integrated pest management (IPM) programme for managing A. gossypii on potted chrysanthemums.  相似文献   

2.
We examined the effects of fertilization on population abundance and within‐plant distribution of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), on potted chrysanthemum, Dendranthema grandiflora (Tzvelev). We also investigated the effects of fertilization on the number of insecticide applications needed to control F. occidentalis on potted chrysanthemum. Under greenhouse conditions, rate of change in population abundance of F. occidentalis increased with fertilization levels from 0 to 100% of the standard fertilization level (375 ppm N) and was four times higher on plants fertilized with the standard level (rate of change = 0.14) than on plants fertilized with 0% during the first 4 weeks after thrips inoculation. Within‐plant distribution of F. occidentalis was influenced by the phenology of the plants rather than total nitrogen content of plant tissues. Prior to flower opening, more F. occidentalis were found in the middle region of the plants. When the flowers began to open, more thrips were found feeding inside the flowers than on the leaves. We further showed that production time, the time from transplantation to flower opening, shortened considerably with increased fertilization level. Production time was shortest, 12 weeks, for plants fertilized with 100% of the standard fertilization level. When the fertilization level was reduced to 20%, production time lengthened to 13 weeks. When fertilization level was reduced to 0%, production time lengthened to 14 weeks. Increased fertilization from 0 to 100% of the standard level did not result in higher numbers of insecticide applications. All three insecticides (acephate, bifenthrin, and spinosad) were effective in keeping the thrips infestation below a predetermined level, five thrips per plant, but bifenthrin required the most number of applications to do so. For chrysanthemum, a fast‐growing crop and heavy utilizer of fertilizer, fertilization influenced not only the population growth of pest insects but also plant production time. As a result, optimizing fertilization level to reduce pest population growth may be a useful tactic in an Integrated Pest Management program for managing F. occidentalis on potted chrysanthemum. However, the effect of fertilization on production time and plant quality should also be considered when implementing this tactic.  相似文献   

3.
Insecticides are often implicated in causing outbreaks of the cotton aphid, Aphis gossypii (Glover) (Homoptera: Aphididae), through stimulation of reproduction. In this study we report the sublethal effects of dosages of bifenthrin, acephate, carbofuran or pyriproxifen on cotton aphid reproduction. We could not detect any increase or decrease in the intrinsic rate of increase of cotton aphids exposed to bifenthrin, acephate or carbofuran. However, we did detect some increases in the net reproductive rate of aphids treated with bifenthrin justifying further investigation of the effect on reproduction by this insecticide. Trends based on simple linear regression models suggest that sublethal dosages of bifenthrin or carbofuran have a negative impact on aphid population growth as dosages increase. These data suggest that stimulation of reproduction by these insecticides probably does not play a major role in cotton aphid outbreaks or resurgence. Pyriproxyfen is a juvenoid currently used for control of whiteflies in cotton. It demonstrated significant activity towards cotton aphid reared on treated cotton in our bioassays. Pyriproxyfen caused sterility in most aphids exposed to dosages exceeding 1 ppm, and reduced aphid longevity by approximately 50%. However, it did not appear to greatly influence the reproductive potential or longevity of reproductively mature aphids. A field study indicates that pyriproxyfen affects cotton aphid population structure and may have potential in managing cotton aphid outbreaks. Modifying aphid population structure and growth through the use of juvenoids such as pyriproxifen may prove to be an effective proactive approach to pest control without adversely impacting beneficial organisms or causing pest resurgence.  相似文献   

4.
The examination of the compatibility between agricultural practices and biocontrol activities is crucial for establishing an efficient, eco-friendly, and sustainable pest management program. In this study, we examined the population dynamics of two specialist aphids, the English grain aphid (Sitobion avenae) on potted wheat and the pea aphid (Acyrthosiphon pisum) on potted alfalfa, as well as the biocontrol activity of a generalist predator, the harlequin ladybird beetle (Harmonia axyridis). We investigated their responses to the presence of the intercropping partner plant species (alfalfa and wheat, respectively) through plant volatiles or visual cues at three nitrogen fertilizer levels in a greenhouse. In the absence of the predator, the English grain aphid population growth rate increased significantly with increasing nitrogen levels, whereas the pea aphid population increased significantly more slowly in response to high nitrogen levels. The English grain aphid and pea aphid population dynamics were unaffected by the presence of the intercropping partner. However, the presence of the intercropping partner enhanced the control of both aphid populations by the harlequin ladybird beetle. Increasing nitrogen fertilizer levels decreased the predation rates, which were otherwise increased by the intercropping partner. The beneficial effects of the intercropping partner were eventually non-existent at the highest nitrogen level tested. These results imply that the interaction between the presence of intercropping partner and the nitrogen fertilizer application affects the biocontrol activity of the natural enemies of insect pests. Thus, the compatibility between agricultural intensification and biocontrol strategies in integrated pest management programs need to be investigated.  相似文献   

5.
Plant nitrogen (N) fertilization is a common cropping practice that is expected to serve as a pest management tool. Its effects on the dynamics of the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) were examined on young peach [Prunus persica (L.) Batsch (Rosaceae)] trees grown under five N treatments, ranging from N shortage to supra‐optimal supply for growth. Aphid population increased over time at the three intermediate N levels. It remained stable at the lowest N level and decreased at the highest N level. Four weeks after the start of infestation, the number of aphids displayed a parabolic response to N level. The relationships between N status and parameters of plant vegetative growth (stem diameter) or biomass allocation (lateral‐total leaf area and root‐shoot ratio) were consistent with responses proposed by models of adaptive plasticity in resource allocation patterns. However, the variation in plant growth predicted aphid population dynamics only partially. Whereas aphid number was positively correlated with plant N status and vegetative growth up to the intermediate N level, it was negatively correlated with plant N status above this level, but not with vegetative growth. The concentrations of primary and secondary (plant defence‐related) metabolites in the plant shoots were modified by N treatments: amino acids (main nutritional resource of aphids) and prunasin increased, whereas chlorogenic acid decreased with increasing N availability. Constitutive changes in plant chemistry in response to N fertilization could not directly explain the reduced aphid performance for the highest N level. Nevertheless, the indirect effect of N on the induction of plant defence compounds by aphid feeding warrants further investigation. The study focuses on the feasibility of handling N fertilization to control M. persicae in orchards, but findings may also be relevant for our understanding of the physiological relationships between the host’s nutritional status and the requirements of the insect.  相似文献   

6.
Verticillium lecanii (Fungi: Deuteromycete) blastospores were applied to a chrysanthemum crop by an ULV electrostatically charged rotary atomiser (APE-80). The deposition of spores and subsequent control ofAphis gossypii were compared to high volume hydraulic application. A full rate treatment (2×1013 blastospores per ha.) was applied by the APE-80 at week 1 and reduced spore rates of 1/6th and 1/12th applied by both the APE-80 and the hydraulic sprayer once and twice a week respectively for weeks 1 to 6. Untreated plots served as controls. Initial deposits of spores were higher with the electrostatic sprayer and better distributed with respect to the position of the target aphids. Significantly lower aphid populations were recorded on the electrostatically treated plots in week 4. The single full rate treatment had significantly fewer aphids than the untreated plots from week 3 and all treatments had significantly fewer aphids than the untreated plots from week 5 onwards. The proportion of the aphid population killed byV. lecanii was higher on the electrostatically treated plots until week 6.   相似文献   

7.
Replicated small plot field experiments were done at two sites growing winter oilseed rape (ADAS Boxworth, Cambridgeshire and ADAS High Mowthorpe, North Yorkshire) and two sites growing spring oilseed rape (ADAS Bridgets, Hampshire and ADAS Rosemaund, Herefordshire) to investigate the effect of cabbage aphid (Brevicoryne brassicae) on crop yield and quality. All four sites were included in the first 2 yr of the experiment in 1994 and 1995 but only those with winter oilseed rape were continued into the final year in 1996. Plots were artificially inoculated with cabbage aphids at either five aphid 4 m-2 or 5 aphids 16 m-2 or left uninoculated to become naturally infested. In 1995 and 1996 the naturally infested treatment was omitted. Sprays of the aphicide pirimicarb at GS 3.3, 3.7, 4.5, 4.9 and 5.5 were used to manipulate aphid populations. Once a plot had been treated at a target growth stage it was sprayed on all subsequent occasions to prevent recolonisation. Aphid numbers were assessed prior to each spray date and their effect on the crop measured in terms of yield of seed and oil and glucosinolate content. Artificial inoculation of aphids was often successful in establishing different populations of the pest at a range of growth stages. Results showed that cabbage aphid sometimes reduced both crop yield and quality. Yield responses to insecticide treatment tended to be larger in spring oilseed rape than in winter oilseed rape mainly because it became more heavily infested at an early growth stage. Tentative thresholds are proposed for control of the pest in both winter and spring oilseed rape. It is stressed that cabbage aphid is a sporadic pest and rarely likely to reach these threshold levels in field crops.  相似文献   

8.
Leaf surface wax and plant morphology of peas influence insect density   总被引:1,自引:0,他引:1  
Insect predators and parasitoids adhere better, forage more effectively, and take more aphid prey on pea plants (Pisum sativum L.) (Leguminosae) with mutations that reduce the crystalline wax bloom on the plant surface. To assess the agronomic potential of this trait for pest management, abundance of pea aphids (Acyrthosiphon pisum L.) (Homoptera: Aphididae) and coccinellid predators, and percent parasitism of the aphids were evaluated on pea lines differing in wax bloom and plant architecture over two field seasons. Three pairs of pea lines were evaluated, each pair with a different architecture and differing within the pair in the amount of surface wax bloom (reduced or normal). The trials included plots treated with a narrow spectrum insecticide (pymetrozine) to reduce aphid populations and untreated controls. Reduced wax peas had significantly fewer aphids per plant in 2002 but not in 2003. Total natural enemy abundance was greater on reduced wax than on normal wax pea lines in both years of the study. Pymetrozine reduced aphid densities significantly in both years. Among the four pea lines evaluated for yield, seed yield per plant was affected by plant morphology and insecticide treatment. Yield was greatest on semileafless plants and on pymetrozine sprayed plots in both years. Yield of the reduced wax line in the semileafless background was similar to or exceeded yield in its normal wax sister line, suggesting that this morphological type was best for an agronomically viable reduced wax phenotype. Pea weevil (Bruchus pisorum L.) (Coleoptera: Bruchidae) damage to seed was overall more frequent on seeds from reduced wax varieties than from normal wax varieties. The results illustrate the trade‐offs associated with a reduced wax trait in peas but also show that certain combinations of reduced wax and gross morphology lead to reduced pea aphid populations and yields similar to those of normal wax peas.  相似文献   

9.
10.
We investigated, within two cereal fields in Southern England, the within-canopy spatial distribution of the aphids Sitobion avenae and Metopolophium dirhodum in relation to crop yield and plant nitrogen. We extended the study to investigate the spatial distribution of aphids that fell to, or returned from, the ground in order to estimate availability of the within-canopy aphid population to ground-active predators. We revealed that crop canopy aphid spatial pattern was associated with nitrogen or yield. Differences were evident between species: S. avenae was generally negatively associated with yield or plant nitrogen, whilst M. dirhodum exhibited positive association. For both aphid species, we observed strong spatial pattern for aphids falling to the ground and conclude that this could, in part, mediate the effectiveness of ground-active predators as pest control agents.  相似文献   

11.
To understand the influence of plant quality on intraguild predation and consequently on the suppression of a shared prey population as well as on plant yield, the interactions between Aphis gossypii Glover (Hemiptera: Aphididae) (shared prey), Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) (intermediate predator), and Orius laevigatus Fieber (Hemiptera: Anthocoridae) (top predator) were investigated in 25‐day experiments on cucumber, Cucumis sativus L. (Cucurbitaceae) at various N fertilization levels (90, 150, and 190 p.p.m.) in microcosm set‐ups under greenhouse conditions. The final aphid population size was significantly affected by an interactive effect of N fertilization and predator application. Regardless of the N fertilization levels, O. laevigatus alone was more effective in aphid suppression than A. aphidimyza alone. In addition, the risk for aphids of being predated upon by both predators together was significantly reduced in the low and medium‐N fertilization levels, whereas it was additive in the high‐N fertilization treatment. The A. aphidimyza population was suppressed by O. laevigatus in both the 90 and 150 p.p.m. N treatments. However, there was no intraguild predation of O. laevigatus on A. aphidimyza at the 190 p.p.m. N level. Total plant yield depended on predator treatments and N fertilization levels, with the highest yield produced at the 150 p.p.m. N fertilization level in treatments with either O. laevigatus alone or with both predators together. Our results demonstrate that the weak asymmetric intraguild predation among A. aphidimyza and O. laevigatus does not influence the ability of both predators together to diminish bottom‐up effects on aphid populations and the yield losses associated with aphid infestations.  相似文献   

12.
Abstract 1 This paper reports on experiments to determine how two different insecticide resistance phenotypes in the aphid Nasonovia ribisnigri (Mosley), which is a major pest of lettuce, change its susceptibility to pyrethroid insecticides and the carbamate pirimicarb. 2 A novel statistical approach determined how the effectiveness of different insecticides was changed by the two resistance phenotypes. This compared the between‐plant distribution of aphid numbers, as opposed to the mean number of aphids per plant. 3 Results from field cage experiments showed that the effect of the resistances differed. Pyrethroid resistance resulted in lower mortality immediately after application of pyrethroids, whereas resistance to pirimicarb shortened the time over which the chemical was effective. 4 The results of laboratory bioassays suggested that these two resistances were not found together in N. ribisnigri. However, the results reported here contradict this assertion. 5 Experiments with insecticide residues showed that reproduction of resistant N. ribisnigri was greater than that of susceptible N. ribisnigri on plants with ageing insecticide residues, even in circumstances where mortality of resistant and susceptible clones of N. ribisnigri were similar. 6 If more than a few aphids are found on a plant then a whole consignment can be rejected for processing. The results reported here suggest that the effect of both insecticide resistances in N. ribsinigri will be to increase the proportion of lettuce heads with an unacceptable number of aphids on them, leading to increased rejection of plants for processing.  相似文献   

13.
为了明确吡蚜酮对抗吡虫啉棉蚜Aphis gossypii种群的防治效果,提出抗吡虫啉棉蚜的治理策略,利用抗吡虫啉棉蚜种群(RF27)、敏感种群(SS)和夏津田间种群(XJ),分别采用浸渍法、微量点滴法、生化测定法和系统观察法研究了棉蚜无翅成蚜对吡蚜酮等药剂的交互抗性及施药对其生物学特性的影响。结果表明: 吡蚜酮对RF27,XJ和SS的LD50分别为1.213×10-5,8.506×10-5和5.140×10-5 μg/头,RF27对吡蚜酮表现出明显的负交互抗性现象。RF27对啶虫脒、烯啶虫胺和噻嗪酮分别产生2.35,2.98和1.71倍的抗性。RF27的羧酸酯酶和谷胱甘肽-S-转移酶的比活力较SS分别高2.73和1.57倍,说明羧酸酯酶和谷胱甘肽-S-转移酶比活力的提高是引起棉蚜对吡虫啉产生抗性的重要原因之一。吡蚜酮分别处理RF27,XJ和SS,其羧酸酯酶和谷胱甘肽-S-转移酶均受到显著抑制。吡蚜酮以低剂量处理RF27成蚜,对其生长发育有显著的不利影响,表现为若蚜存活率降低(64.60%),净生殖率降低(10.39),内禀增长率和周限增长率显著降低(分别为0.21和1.23),世代历期延长(10.87 d),相对适合度较小(仅为0.70)。这些结果表明吡蚜酮在棉蚜防治中具有很高的应用价值。  相似文献   

14.
In August 1994 and 1995 classical biological control releases were made in cotton in the San Joaquin Valley, California, with an Arkansas strain of the entomopathogenic fungus, Neozygites fresenii, a pathogen of the cotton aphid, Aphis gossypii. Pre-release samples in both years indicated that N. fresenii was not naturally present in A. gossypii populations in the San Joaquin Valley. Two release methods were compared: dried N. fresenii-infected cotton aphid “cadavers” and chamber inoculation of A. gossypii. Both methods were successful in introducing N. fresenii to cotton aphids in California; however, higher prevalence of fungal infection resulted with the cadaver treatments. N. fresenii persisted and spread in the aphid population until early October 1994 and late September 1995. The highest mean percentage infection in the cadaver treatment in 1994 reached a level (14%) considered imminent for epizootics (12–15%). The use of predator exclusion cages resulted in higher N. fresenii prevalences.  相似文献   

15.
The broad-spectrum insecticides greatly influence the control of cotton aphids; however, due to frequent chemical control, Aphis gossypii (Hemiptera: Aphididae) has developed resistance against several classes of synthetic insecticides. In this study, we explored the sub-lethal effects of imidacloprid and pirimicarb, two commonly used insecticides for aphid control, on a parasitoid wasp, Lysiphlebus fabarum (Marshall) (Braconidae: Aphidiinae), when simultaneously used to control melon aphid on cucumber plants, as part of a comprehensive study for integrated pest management. Bioassays of imidacloprid and pirimicarb were performed to calculate LC50 with third instars of A. gossypii. The LC50 of these insecticides (110.55 and 250.89 μg/lit, respectively) were used to expose the wasp larvae, pupae, and adult parasitoids on a cucumber leaf. The percent mortality, percent adult emergence, and sex ratio were calculated during each exposure test. Moreover, the body size, egg load, and mature egg size of wasps surviving the insecticide treatments, as well as the sex ratio of the second generation was evaluated. Regardless of the host aphid mortality, none of the insecticides caused mortality of larval stage of the parasitoid. The insecticide application on pupal stage revealed that the percentage of mortality, sex ratio, body size, and egg load of surviving wasps, as well as the sex ratio of their offspring was adversely affected by imidacloprid, but not by pirimicarb. The present study suggests pirimicarb as a preferred insecticide, with less harmful effects on the fitness components of L. fabarum, for integrated pest management of cotton aphids.  相似文献   

16.
The cabbage aphid, Brevicoryne brassicae is one of the most destructive pests in Cruciferaceae or Brassicaceae plant family around the world. According to this pest rapid resistance to insecticide, using the resistant cultivars should be evaluated. In the present study, the different canola cultivars resistance against the cabbage aphid and the population fluctuations in canola fields and also the natural parasitism are evaluated in Shahre-rey region. To evaluate the population fluctuations and its natural parasitism on the RGS003, SLMOO46, Karag2, Licord, Sarigol, Opera, Ocapi and Talaei canola cultivars were cultivated in four replications using the complete randomised block design. The population fluctuations studies showed that the pest is active during the canola growth period in studied region, but the peak of population and damage is found in 6 May month. The results showed that natural parasitism percentage of cabbage aphid on different canola cultivars has not significant difference, but the parasitism amount in different sampling dates was significantly different, so that the natural parasitism maximum observed in date 29 April. These results showed that the different canola cultivars have significant effects on cabbage aphid and parasitoids activity amount. Using the present results, the recognised cultivars in integrated pest management programmes can be used to grow the laboratory aphids as the parasitoids hosts.  相似文献   

17.
Abstract Effects of CO2 level (ambient vs. elevated) on the interactions among three cotton (Gossypium hirsutum) genotypes, the cotton aphid (Aphis gossypii Glover), and its hymenoptera parasitoid (Lysiphlebia japonica Ashrnead) were quantified. It was hypothesized that aphid‐parasitoid interactions in crop systems may be altered by elevated CO2, and that the degree of change is influenced by plant genotype. The cotton genotypes had high (M9101), medium (HZ401) and low (ZMS13) gossypol contents, and the response to elevated CO2 was genotype‐specific. Elevated CO2 increased the ratio of total non‐structural carbohydrates to nitrogen (TNC: N) in the high‐gossypol genotype and the medium‐gossypol genotype. For all three genotypes, elevated CO2 had no effect on concentrations of gossypol and condensed tannins. A. gossypii fitness declined when aphids were reared on the high‐gossypol genotype versus the low‐gossypol genotype under elevated CO2. Furthermore, elevated CO2 decreased the developmental time of L. japonica associated with the high‐gossypol genotype and the low‐gossypol genotype, but did not affect parasitism or emergence rates. Our study suggests that the abundance of A. gossypii on cotton will not be directly affected by increases in atmospheric CO2. We speculate that A. gossypii may diminish in pest status in elevated CO2 and high‐gossypol genotype environments because of reduced fitness to the high‐gossypol genotype and shorter developmental time of L. japonica.  相似文献   

18.
Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2× N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity.  相似文献   

19.
Rising atmospheric CO2 levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N‐fixing‐deficient mutant (dnf1) and its wild‐type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO2 increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO2 increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation‐related enzymes (glutamine synthetase, Glutamate synthase) and transamination‐related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO2. In contrast, aphid infested dnf1 plants had decreased activities of N assimilation‐related enzymes and transmination‐related enzymes and amino acid concentrations under elevated CO2. Furthermore, elevated CO2 up‐regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down‐regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO2.  相似文献   

20.
Population parameters of the melon aphid, Aphis gossypii Glover, were compared for insects grown on six cultivars of chrysanthemum, Dendranthema grandiflora Tzvelev ('Fontana', 'Iridon', 'Pink Lady', 'Splendor', 'White Diamond', and 'White View Time') fertilized with 3 different levels of nitrogen (80, 160 and 240 mg N/l) and 2 levels of irrigation (high 300 ml and low 210 ml every other day). Fecundity, longevity, and survivorship of aphids were significantly affected by the cultivar treatment, but were not affected by irrigation or fertilizer treatments or by any combination of interactions among cultivar, fertilizer and irrigation. Significantly fewer aphids survived on the cultivar 'Pink Lady' (populations reduced by 20.8%) than any other cultivar examined. Intrinsic rates of increase r m , finite rates of increase (R 0), and population doubling times (DT) for aphids were different among fertilizer levels and cultivars, but were not different among irrigation levels. There were no significant fertilizer by irrigation interaction effects upon r m , R 0, or DT. The highest rate of fertilizer applied (240 mg N/liter) adversely affected the intrinsic rate of increase of melon aphids; however, aphid intrinsic rate of increase was weakly correlated with foliar soluble protein levels (r=0.989, P=0.0954). Foliar soluble protein levels were not associated with fertilization treatment. Melon aphids perform consistently better on the cultivars 'White Diamond', 'Fontana', and 'Splendor', relative to those aphids growing on 'Iridon', 'Pink Lady', or 'White View Time'. In general, melon aphids performed best on 'White Diamond' and poorest on 'Pink Lady'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号