首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
我们用T_4RNA连接酶,通过两条路线分别将GpUpCpU,CpCpGpG和TpψpCpG三个寡核苷酸片段连接成十二核苷十一磷酸,GpUpCpU~(32)pCpCpGpG~(32)pTpψpCpG,即相当于酵母丙氨酸转移核糖核酸分子中顺序46~57的一段序列。我们找到了供体3'-端不带磷或其他保护基时,其自聚或自身环化的产生都不明显的条件,从而使供受体用量比大大降低。在有的情况下,供体量大于受体,也获得了比较满意的连接产率。此外,在我们的实验中,5'端是二个稀有嘧啶碱基T和ψ的供体~(32)pTpψpCpG与受体CpCpGpG连接的产率不低于由普通碱基供体的连接产率。我们合成的GpUpCpU~(32)pCpCpGpG~(32)pTpψpCpG已用于酵母丙氨酸转移核糖核酸3'端半分子和全分子的合成中。  相似文献   

2.
本文报道利用T_4 RNA连接酶酶促合成酵母丙氨酸转移核糖核酸3′端(36~45)Cp~(m~1)Ip-ψpGpGpGpApGpApG十核苷九磷酸片段的工作。合成制备时,我们采用将Cp~(m~1)IpψpG、GpG、ApGpApGp三片段从5′向3′延伸的合成路线。在合成路线的探索中我们发现了一些新现象:1.在T_4 RNA连接酶催化反应中Cp~(m~1)Ipψ作为受体有局限性。2.GpG等二核苷一磷酸可以与pCp等供体分子连接。3.60℃预温育对GpG片段的标记和六核苷酸、十核苷酸连接反应提高产率有明显的作用。  相似文献   

3.
以CpGpCpm_2~2G、CpUpCpC、CpUpUpI和Gp为原料,采用T_4RNA ligase催化连接的方法,通过用3′-端带有起保护怍用的磷酸单酯的寡核苷酸作供体(途径A)以及除最后一步外各步都用3′-端是自由OH基的寡核苷酸作供体(途径B)的两种途径,都合成了酵母丙氨酸转移核糖核酸分子中一个十三核苷酸片段(顺序23~35)CpGpCpm_2~2GpCpUpCpCpCpUpUpIpGp。产率较高。产物的连接点、末端和序列都经过严格鉴定。研究表明,位于受体分子3′-端的稀有嘌呤核苷m_2~2G对T_4RNA ligase催化的连接反应没有不利影响,并再次证实,在用3′-端是自由OH基的寡核苷酸作供体进行T_4RNA ligase催化的连接反应时,为了得到高的产率,避免或降低同时产生供体分子的自聚和环化,并不一定需要受体分子大大过量。用本法合成的CpGpCpm_2~2GpCpUpCpCpCpUpUpIpGp已用于酵母丙氨酸转移核糖核酸5′-端半分子和全分子的合成中。  相似文献   

4.
本文报导了酵母丙氨酸转移核糖核酸3′-半分子反密码区中GpCpm~1IpψpGpGp的酶促合成。作者发现,当以~(32)pGpGp(2′,3′)为供体,GpCpm~1Ipψ为受体,用T_4RNA联结酶在一般条件下联结时(37℃,2小时),产率只有10%左右;但在10℃条件下,供体与受体比为1:5时,可以得到50~60%的较高产率。将~(32)pGpGp(2′,3′)与GpCpm~1Ipψ用T_4RNA联结酶在pH8.3,10℃下反应48小时后,再经DEAE-葡聚糖凝胶A-25柱层析分离纯化,即可得到GpCpm~1Ipψ~(32)pGpGp(2′,3′)。产物经双向电泳层析图谱分析,抗单酯酶测定,毗邻分析,用牛胰核糖核酸酶水解然后5′端用~(32)p标记,再经双向图谱和核苷酸组成比例等鉴定,证明产物的纯度和排列顺序符合预定要求。  相似文献   

5.
本文报导了酵母丙氨酸转移核糖核酸3′-半分子反密码区中GpCpm~1IppGpGp的酶促合成。作者发现,当以~(32)pGpGp(2′,3′)为供体,GpCpm~1Ip为受体,用T_4RNA 联结酶在一般条件下联结时(37℃,2小时),产率只有10%左右;但在10℃条件下,供体与受体比为1:5时,可以得到50~60%的较高产率。将~(32)pGpGp(2′,3′)与GpCpm~1lp用T_4RNA 联结酶在pH8.3,10℃下反应48小时后,再经DEAE-葡聚糖凝胶A-25柱层析分离纯化,即可得到GpCpm~1Ip~(32)pGpGp(2′,3′)。产物经双向电泳层析图谱分析,抗单酯酶测定,毗邻分析,用牛胰核糖核酸酶水解然后5′端用~(32)p 标记,再经双向图谱和核苷酸组成比例等鉴定,证明产物的纯度和排列顺序符合预定要求。  相似文献   

6.
本文报道了酵母丙氨酸转移核糖核酸5′-半分子中二氢尿嘧啶环区的九核苷酸AGDCGGGDAG的合成工作。合成的方案是采用先合成AGD、CGG和DAG三个三核苷二磷酸片段,然后再以AGD pCGGDAG(3 p6)或AGDCGG pDAG(6 p3)两种方式用T_4RNA连接酶连接成为所需要的九核苷酸。CGG和DAG是采用磷酸二酯法进行化学合成,AGD是用AG>P同D借核糖核酸酶N_1酶促合成。这个路线的优点是三个三核苷二磷酸片段易于大量合成制备,无论是3 p6或6 p3两条路线的中间产物AGDCGG(产率61%)和CGGDAG(产率64%)和最终的九核苷酸产物都能得到好的连接产率和分离纯度。3 p6和6 p3两条路线所得的九核苷酸的连接产率分别为52%和82%。合成的产物均经过毗邻分析,5′末端~(32)P标记后的电泳-同系层析双向纯度鉴定或凝胶电泳以及核苷酸顺序分析证明了合成产物的均一性和结构的正确性。  相似文献   

7.
本文介绍用T_4 RNA连接酶酶促合成方法合成酵母丙氨酸转移核糖核酸5′端十三核苷十二磷酸片段(1~13)GpGpGpCpGpUpGpUp~(m~1)GpGpCpGpU的工作。我们将这一片段分为二段来合成,先合成5′-端6Nt和3′-端7Nt(A合成路线)或5′端7Nt和3′-端6Nt(B合成路线),再将它们连接起来。并对由于片段含鸟便嘌呤核苷酸较多而在合成和分离上出现的一些特性进行了探讨。  相似文献   

8.
本文报道了酵母丙氨酸转移核糖核酸3′端半分子反密码区的四核苷酸片段Cpm~1IpψpG的合成。先以Cpm~1Ipψ为引物,GDP为底物,在PNPase和RNase T_1两个酶的协同作用下,生成Cpm~1IpψpGp,对应用这两个酶进行合成的规律作了摸索与归纳,使合成Cpm~1IpψpGp的产率达到90%以上,它再经固定化碱性磷酸单酯酶脱磷得到Cpm~1IpψpG,脱磷率达到98%,此工作通过合成方法旁证了RNase T_1不水解m~Ip-N键。  相似文献   

9.
本文报道了酵母丙氨酸转移核糖核酸5'-半分子中二氢尿嘧啶环区的九核苷酸AGDCGGDAG的合成工作。合成的方案是采用先合成AGD、CGG和DAG三个三核苷二磷酸片段,然后再以AGD pCGGDAG(3 p6)或AGDCGG pDAG(6 p3)两种方式用T_4 RNA连接酶连接成为所需要的九核苷酸。CGG和DAG是采用磷酸二酯法进行化学合成,AGD是用AG>P同D借核糖核酸酶N_1酶促合成。这个路线的优点是三个三核苷二磷酸片段易于大量合成制备,无论是3 p6或6 p3两条路线的中间产物AGDOGG(产率61%)和CGGDAG(产率64%)和最终的九核苷酸产物都能得到好的连接产率和分离纯度。3 p6和6 p3两条路线所得的九核苷酸的连接产率分别为52%和82%。合成的产物均经过毗邻分析,5'末端~(32)P标记后的电泳-同系层折双向纯度鉴定或凝胶电泳以及核苷酸顺序分析证明了合成产物的均一性和结构的正确性。  相似文献   

10.
为了制备核糖核酸酶P的底物——人工合成的tRNA前体,我们用五核苷四磷酸_(HO)U_PC_PC_PA~*_PC_(OH)(~*P代表~(32)P)与天然的酵母丙氨酸tRNA或其5′半分子在T_4RNA连接酶催化下反应,连接产率甚低。但观察到一个很奇特的现象:不管何种反应条件,甚至不加tRNA和不加酶的对照实验中,经聚丙烯酰胺凝胶(PAG)电泳分析反应产物时发现,在约相当于RNA序列分析“梯子”18核苷酸(nt)处总  相似文献   

11.
本文报道了利用酶促合成的方法(RNase N_1和T_4 RNA连接酶)合成了酵母丙氨酸转移核糖核酸分子中第23位到第35位的十三核苷酸的类似物CpGpCpGpCpUpCpCpCpUpUpIp-Gp(天然酵母丙氨酸tRNA中第26位是m_2~2G)。CpGpCpG是由CpG>p和CpG经RNase N_1酶催化合成的,产率为20%。十三核苷酸CpGpCpGpCpUpCpCpCpUpUpIpGp的合成是由T_4 RNA连接酶催化CpGpCpG与pCpUpCpCpCpUpUpIpGp之间的连接反应实现的,产率为80%。产物经双向电泳层析分析为一点,用蛇毒磷酸二酯酶部分酶解后的双向图谱分析证明十三核苷酸的核苷酸排列顺序正确。  相似文献   

12.
本文报道了用RNase N_1(核糖核酸酶、鸟嘌呤核苷酸-2′-移换酶,Neurospora Crassa,E.C.2·7·7·26)连接CpUpCpG>p与UpCpCpA合成酵母丙氨酸转移核糖核酸3′-端接受茎区八核苷七磷酸CpUpCpGpUpCpCpA。反应条件包括:供体(CpUpCpG>p),0.07~0.09M;受体(UpCpCpA)浓度为供体浓度的三至七倍;RNase N_1,每毫升250单位;pH7.5磷酸缓冲液,0.1M;0°±2℃反应48小时。在这一反应中,CpUpCpGpUpCpCpA的产率随着受体与供体的克分子比例的增大而升高,当这一比例超过6,产率超过30%。本方法一次可得到纯的CpUpCpGpUpCpCpA数毫克。关于从最终产物中除去RNaseN_1的问题,我们发现在pH3.5条件下进行DEAMSephadexA-25(Cl~-型)柱层析或用pH2.7条件下的纸电泳法均可得到较满意的效果。当把反应物在6M NH_4OH,0.04M DTP,37℃保温15分钟,或者在pH7.4 Tris-HCl缓冲液和0.04M DTPJ 0℃保温7小时以后,RNase N_1即完全失活。可是,一旦除去上述DTP等抑制条件以后,失活后的RNase N_1在空气中可以逐步恢复其大部分活力。在我们的实验中没有向反应物中加入0.1%的明胶蛋白,很可能底物本身对RNase N_1具有一定的保护作用。在合成CpUpCpGpUpCpCpA的同时,我们还用RNase N_1合成了GpC,GpΨ,GpU,GpUp,GpUpCpC及CpUp(UpGpUpCpC等寡核苷酸,并且都得到了较好的产率。对RNase N_1酶促合成CpUpCpGpUpCpCpA反应中产生的几个付产物进行了分离纯化和初步鉴定。  相似文献   

13.
本文报道了用DEAE-葡聚糖凝胶A-25柱层析纯化酵母丙氨酸tRNA的方法,纯化的tRNA,按接受丙氨酸的活力计算,其纯度达60~70%。经核糖核酸酶T_1(RNase T_1)限制性降解(tRNA与RNase T_1的比率为1毫克/15单位,0℃,4分钟),柱层析,制备了tRNA的两个半分子。用萤光标记法,[~3H]标记法,测得5′半分子的3′末端为鸟苷酸;用[~(32)P]标记法测得3′半分子的5′末端为胞苷酸。因此,RNase T_1限制性降解丙氨酸tRNA的切点在反密码子的G—C键之间。  相似文献   

14.
本文报道了用DEAE-葡聚糖凝胶A-25柱层析纯化酵母丙氨酸tRNA 的方法,纯化的tRNA,按接受丙氨酸的活力计算,其纯度达60~70%。经核糖核酸酶T_1(RNase T_1)限制性降解(tRNA 与RNase T_1的比率为1毫克/15单位,0℃,4分钟),柱层析,制备了tRNA 的两个半分子。用萤光标记法,[~3H]标记法,测得5′半分子的3′末端为鸟苷酸;用[~(32)P]标记法测得3′半分子的5′末端为胞苷酸。因此,RNase T_1限制性降解丙氨酸tRNA 的切点在反密码子的G—C 键之间。  相似文献   

15.
据新华社一月十九日讯:我国中国科学院上海生物化学研究所等六个单位的研究人员同有关单位成功地实现了人工合成酵母丙氨酸转移核糖核酸全分子,并显示着与天然分子相同的化学结构和完整的生物活性,所得产率也是比较高的。  相似文献   

16.
本文报道了用RNase N_1(核糖核酸酶、鸟嘌呤核苷酸-2’-移换酶,Neurospora Crassa,E.C.2.7.7.26)连接CpUpCpG>p与UpCpCpA合成酵母丙氨酸转移核糖核酸3’-端接受茎区八核苷七磷酸GpUpCpGpupCpCpA。反应条件包括:供体(CpUpCpG>p),0.07~0.09M;受体(UpCpCpA)浓度为供体浓度的三至七倍;RNase N_1,每毫升250单位;pH7.5磷酸缓冲液,0.1M;0°±2℃反应48小时。在这一反应中,CpUpCpGpUpCpCpA的产率随着受体与供体的克分子比例的增大而升高,当这一比例超过6,产率超过30%。本方法一次可得到纯的CpUpCpGpUpCpCpA数毫克。关于从最终产物中除去RNase N_1的问题,我们发现在pH3.5条件下进行DEAESephadexA-25(Cl~-型)柱层析或用pH2.7条件下的纸电泳法均可得到较满意的效果。当把反应物在6M NH_4OH,0.04M DTP,37℃保温15分钟,或者在pH7.4 Tris-HCl缓冲液和0.04MDTP,0℃保温7小时以后,RNase N_1即完全失活。可是,一旦除去上述DTP等抑制条件以后,失活后的RNase N_1在空气中可以逐步恢复其大部分活力。在我们的实验中没有向反应物中加入0.1%的明胶蛋白,很可能底物本身对RNase N_1具有一定的保护作用。在合成CpUpCpGpUpCpCpA的同时,我们还用RNase N_1合成了GpC,GpΨ,GpU,GpUp,GpUpCpC及CpUpCpGpUpCpC等寡核苷酸,并且都得到了较好的产率。对RNase N_1酶促合成CpUpCpGpUpCpCpA反应中产生的几个付产物进行了分离纯化和初步鉴定。  相似文献   

17.
在干扰素的功能表达中,2′-5′寡聚腺苷酸是一类重要的媒介物。本文研究了T_4-RNA连接酶的专一性及其用于2′-5′寡聚腺苷酸衍生物合成的可能性。1980年,我们曾发现2′-5′寡聚腺苷酸可以作为RNA连接酶的受体。本文对此作了进一步的研究,证实了T_4-RNA连接酶可以将pNp(N=A,G,C,U)、pCpUpC、pCpm_2~2G等供体连到2′-5′P_3A_3受体上去,生成各种相应产物。2′-5′磷酸二酯键连接的寡核苷酸能否作为T_4-RNA连接酶的供体,有人估计不大可能。本文也证实了T_4-RNA连接酶能将供体pA~(2′)p~(5′)A连接到CpUpC、UpCpCpA、Cpm′IpψpG等受体上面去。从而说明T_4-RNA连接酶也可使用2′-5′磷酸二酯键连接的寡核苷酸作为供体。应用T_4-RNA连接酶,可以合成既含有2′-5′又含有3′-5′磷酸二酯键的寡核苷酸。本工作还证明A~(2′)p~(5′)A也可以作为T_4-多核苷酸激酶的底物。  相似文献   

18.
<正>"酵母丙氨酸转移核糖核酸(酵母丙氨酸tRNA)人工全合成"研究结果先后发表在1982年的《科学通报》[1]和1983年的《中国科学》[2]上.本工作启动于1968年,完成于1981年11月,是继我国1965年在世界上首次人工合成蛋白质——结晶牛胰岛素后,又在世界上首次人工合成一个核酸分子,其组成、序列和  相似文献   

19.
GpUpCpU是酵母丙氨酸转移核糖核酸额外区的一个四核苷酸片段。我们采用的合成路线为: _(MMT)C~(Bz)(OBz)-p _(HO)U(OBz)_2_(HO)C~(OBz)-p-U(OBz)_2UpCpU G>p  相似文献   

20.
本文报道用化学方法合成酵母丙氨酸转移核糖核酸3′-端半分子反密码区中的GpCp-m~1IpΨ*四核苷三磷酸片段。合成路线是由_(HO)Ψ~(Bz)(OBz)_2开始,采用逐个伸长的方式,依次同保护单核苷酸_(MMT)m_1I(OBz)-p,_(MMT)C~(Bz)(OBz)-p和_(1Bu)G_(iBu)(OiBu)-p缩合得到全酰化的保护四核苷三磷酸,最后用NH_3/甲醇溶液脱去全部酰基保护基并经柱层析分离纯化得GpCpm~1IpΨ。所用缩合剂均为DCC。纯化后的GpCpm_1IpΨ层析电泳鉴定均一,碱解和酶解得到预期的核苷酸组成比例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号