首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The response to the parthenogenetic agent Ca-ionophore A23187 was studied in hamster oocytes undergoing meiotic maturation, by using electrophysiological techniques. Following germinal vesicle breakdown, the activating agent induces a long-lasting hyperpolarization accompanied by an increased membrane conductance. The duration of the response progressively shortens during the long metaphase I stage. Terminal metaphase I oocytes respond to A23187 by a hyperpolarization that is very similar to that seen in metaphase II oocytes. The ionic mechanism of the change in the membrane sensitivity to A23187 during meiotic maturation is discussed.  相似文献   

2.
Membrane potential responses to acetylcholine (ACh, 10(-7)-10(-3 M) were investigated in monkey and rabbit ovarian oocytes. In monkey oocytes ACh most commonly elicited a short-latency hyperpolarization concomitant with a decreased membrane input resistance (Rin). Under voltage-clamp short-latency ACh currents had an equilibrium potential of approximately -40 mV. In rabbit oocytes responses to ACh consisted of an increase in Rin or of a depolarization with an equilibrium potential of approximately -15 mV. Curare, hexamethonium, and atropine (10(-5)-10(-3) M) did not block these ACh responses. Thus, the oocyte membrane in the rabbit contains ACh receptors that cannot be classified as either muscarinic or nicotinic.  相似文献   

3.
Angiotensin II receptors in Xenopus oocytes.   总被引:2,自引:0,他引:2  
Electrical recordings were used to study the sensitivity of native Xenopus oocytes to the octapeptide angiotensin II (AII). AII elicited oscillatory currents associated with an increase in membrane conductance to Cl-. Responsiveness to AII varied greatly between oocytes taken from different frogs, and to a lesser extent between oocytes from the same ovary. Oocytes from frogs showing high sensitivity had response thresholds between 0.5-1.0 nM AII, and at a holding potential of -60 mV, responded to 1 microM AII with currents greater than 3 microA. In contrast, oocytes from some frogs gave no response, even to 10 microM AII. A total of 618 oocytes from 79 frogs were tested for sensitivity to AII, and oocytes from 85% of frogs gave detectable electrical responses. Oscillatory Cl- currents elicited by AII were largely independent of extracellular Ca2+, were abolished by chelation of intracellular Ca2+ using EGTA and were mimicked by intraoocyte injection of inositol 1,4,5-trisphosphate (IP3). In addition to oscillatory Cl- currents, AII also evoked an influx of extracellular Ca2+, giving rise to a transient inward Cl- current on membrane hyperpolarizing steps. These experiments all suggested that AII responses were elicited through activation of an intracellular messenger pathway triggered by hydrolysis of inositolphospholipids, mobilization of intracellular Ca2+ by inositol polyphosphates, and activation of Ca(2+)-gated Cl- channels. The effect of manual or enzymic defolliculation on AII responses was studied in nine separate experiments recording from 70 defolliculated oocytes. Efficacy of defolliculation procedures was assayed using scanning electron microscopy, which confirmed removal of 90 to greater than 98% of follicular cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ionic currents underlying the action potential of Rana pipiens oocytes   总被引:1,自引:0,他引:1  
Ionic currents in immature, ovulated Rana pipiens oocytes (metaphase I) were studied using the voltage-clamp technique. At this stage of maturity the oocyte can produce action potentials in response to depolarizing current or as an "off response" to hyperpolarizing current. Reducing external Na+ to 1/10 normal (choline substituted) eliminated the action potentials and both the negative-slope region and zero-crossing of the I-V relation. Reducing external Cl- to 1/10 or 1/100 normal (methanesulfonate substituted) lengthened the action potential. The outward current was reduced and a net inward current was revealed. By changing external Na+, Cl-, and K+ concentrations and using blocking agents (SITS, TEA), three voltage- and time-dependent currents were identified, INa, IK and ICl. The Na+ current activated at about 0 mV and reversed at very positive values which decreased during maturation. Inward Na+ current produced the upstroke of the action potential. During each voltage-clamp step the Na+ current activated slowly (seconds) and did not inactivate within many minutes. The Na+ current was not blocked by TTX at micromolar concentrations. The K+ current was present only in the youngest oocytes. Because IK was superimposed on a large leakage current, it appeared to reverse at the resting potential. When leakage currents were subtracted, the reversal potential for IK was more negative than -110 mV in Ringer's solution. IK was outwardly rectifying and strongly activated above -50 mV. The outward K+ current produced an after hyperpolarization at the end of each action potential. IK was blocked completely and reversibly by 20 mM external TEA. The Cl- current activated at about +10 mV and was outwardly rectifying. ICl was blocked completely and reversibly by 400 microM SITS added to the bathing medium. This current helped repolarize the membrane following an action potential in the youngest oocytes and was the only repolarizing current in more mature oocytes that had lost IK. The total leakage current had an apparently linear I-V relation and was separated into two components: a Na+ current (IN) and a smaller component carried by as yet unidentified ions.  相似文献   

5.
The objective of this study was to evaluate parthenogenetic activation of domestic cat oocytes after being exposed to either ethanol, magnetic field, calcium ionophore A23187, or cycloheximide and a combination of these agents. We also wished to evaluate the usefulness of the magnetic field for oocyte activation. In vitro matured oocytes subjected to artificial activation were randomly assigned into eight groups according to activating agents: (1) 10% ethanol; (2) the magnetic field (slow-changing, homogenous magnetic field with low values of induction); (3) 10% ethanol plus magnetic field; (4) 10 microM calcium ionophore A23187; (5) 10 microM calcium ionophore A23187 plus magnetic field; (6) 10% ethanol and 10 microg/mL of cycloheximide; (7) 10% ethanol and 10 microg/mL of cycloheximide plus magnetic field; (8) oocytes were not exposed to any of the activating agents. After activation oocytes were stained with Hoechst 33258 and parthenogenetic activation was defined as oocytes containing pronuclei and second polar bodies or two to four or six nuclei (embryonic cleavage). The total activation rate by using different activation treatments was 40%. The addition of the magnetic field to ethanol or calcium ionophore treatments resulted in increased parthenogenetic activation rates from 47% to 75%, and from 19% to 48%, respectively (P<0.001). Instead, when the magnetic field was added to ethanol and cycloheximide treatment, activation rate decreased from 48% to 30%. Oocytes activated with magnetic field only gave the lowest activation rate (12%). We concluded that a magnetic field can be used as an activating agent, and the combination of ethanol and magnetic field is an effective method for domestic cat oocyte activation.  相似文献   

6.
Summary Cultured epithelial cells (Intestine 407) derived from fetal human small intestine exhibited spontaneous oscillations of membrane potential between the resting level of about –20 mV and the activated level of about –75mV. The cells were hyperpolarized to the latter level in response to mechanical or electrical stimuli. The hyperpolarizing responses were also elicited by the application of intestinal secretagogues: acetylcholine, histamine, serotonin and vasoactive intestinal polypeptide (VIP). The spontaneous oscillation of membrane potential became prominent and long-lasting in the presence of acetylcholine, histamine, serotonin or VIP. These secretagogue-induced responses were mediated by individual independent receptors on the cell membrane. Muscarinic receptors were responsible for the acetylcholine response, and H1-receptors for the histamine response. The cells also responded with a slow hyperpolarization to calcium ionophore A23187, which is known to induce intestinal secretion. The spontaneously occurring hyperpolarizing responses and those induced by stimuli were both due to an increase in the K+ conductance of the cell membrane. Since acetylcholine, histamine, serotonin and A23187 are known to promote mobilization of cellular Ca2+ ions in intestinal secretory cells, it is hypothesized that these electrical activities of the cell are closely related to the receptor stimulation which leads to the Ca2+-mediated intestinal secretion.  相似文献   

7.
Y Iwao 《Developmental biology》1987,123(2):559-565
Immature oocytes of the toad, Bufo japonicus, inseminated between first- and second-meiotic metaphase, exhibited polyspermy. Monospermy occurred when the oocytes had reached second-meiotic metaphase. Electrical recording during insemination of the immature oocyte showed fast-rising and slow-rising spikes followed by a gradual shift to a positive membrane potential. The number of fast spikes in each oocyte corresponded well with the number of sperm observed in cytological sections. Mature oocytes elicited one fast spike followed by a rapid rise to a positive plateau. Ion-substitution experiments indicated that, like the plateau, the initial fast spike is mediated mainly by increased permeability of the oocyte plasma membrane to halides such as Cl- or I-. When inseminated with sperm of the newt, Cynops pyrrhogaster, mature Bufo oocytes exhibited polyspermy accompanied by a gradual hyperpolarization and a slowly developing positive plateau, without the fast spike that occurs in self-species fertilization. These results indicated that the spike component of the fertilization potential can be dissociated from the plateau component, and may be elicited by different mechanisms.  相似文献   

8.
Functional expression of receptors for GnRH was studied using Xenopus laevis oocytes injected with poly(A)+ mRNA extracted from rat anterior pituitary glands. Whole-cell currents were monitored using two-electrode voltage-clamp techniques. In oocytes which responded to both GnRH and TRH, the GnRH response showed a longer latency and time-to-peak than the TRH response. The response to GnRH or an agonist of GnRH receptors, buserelin (1 nM-1 microM) consisted of current fluctuations and occurred in a dose-dependent manner. This GnRH response was blocked by the Cl- channel blockers 9-AC (9-anthracene carboxylic acid; 1 mM), 4,4'-diisothiocyanastilbene-2,2'-disulfonic acid (0.1 mM), and diphenylamine-2-carboxylic acid (0.1 mM). The reversal potential for the GnRH-induced current fluctuations was -25 mV, comparable with the reported Cl- equilibrium potential in Xenopus oocytes, and its shift, when the external concentration of Cl- was changed, was reasonably described by the Nernst equation. These results indicate that the GnRH-induced response was dependent on the activity of Cl- channels. Ca2+ also plays a role, as the GnRH-induced response was reversibly suppressed by a calmodulin inhibitor, chlordiazepoxide (0.2 microM), and by a blocker of intracellular Ca2+ release, TMB-8 (8-(N.N-diethylamino) octyl-3,4,5-trimethoxybenzoate; 0.1-0.2 mM). It is concluded that GnRH (and TRH) receptors, expressed in Xenopus oocytes by injecting exogenous mRNA from rat anterior pituitary glands, operate via activation of Ca2+-dependent Cl- channels.  相似文献   

9.
A slowly activated, inward current could be evoked from Xenopus oocytes in response to application of a strong (approximately -190 mV) hyperpolarizing pulse. However, a much lesser hyperpolarization (approximately -130 mV) was able to evoke a similar current from oocytes that expressed the cellular proteins IsK and phospholemman, the synthetic protein SYN-C, and the NB protein of influenza B virus. All of these currents were carried principally by Cl-, and they had similar blocker profiles. The time course (the function of time that described the current increase during a hyperpolarizing voltage-clamp pulse, i.e., activation kinetics) varied from one batch of oocytes to another, but did not vary within each batch with the type of protein expressed. This slowly activated, inward current evoked by hyperpolarization to approximately -130 mV required the expression of a characteristic, minimum level of each of the proteins IsK, SYN-C, and NB. However, not every integral membrane protein expressed in oocytes allowed substantial inward currents to be generated at -130 mV. Oocytes that expressed large amounts of the M2 protein of influenza A virus, which is known to possess an intrinsic cation channel activity, did not display a Cl- current when hyperpolarized to -130 mV. These results suggest that expression of any of the four proteins-IsK, phospholemman, SYN-C, or NB- acts as an activator of an endogenous Cl- conductance.  相似文献   

10.
休止于第二次成熟分裂中期(MI)的小鼠卵母细胞分别乙醇,钙离子载体A23187、电刺激或精子激活并用Ca^2+特异荧光探针-Fura2/AM测定细胞内游离Ca^2+的变化。结果表明,受精诱导MⅡ卵内游离Ca^2+浓度多次跃升(oscillation)乙醇,钙离子载体及1次电刺激仅诱导胞内Ca^2+1次升高,人工诱导激活的卵可象正常受精卵一样卵裂并发育至囊胚,用EGTA阻止受精和人工激活过程中卵内游  相似文献   

11.
Voltage-clamp techniques were used to study the membrane currents elicited by follicle stimulating hormone (FSH) and acetylcholine (ACh) in follicle-enclosed oocytes of Xenopus laevis (follicles). Both agonists caused complex responses that were more evident when the follicles were in hypotonic Ringer solution (HR; 190.4 mosM). In this medium, currents activated by FSH regularly showed three phases whereas currents activated by ACh displayed three to six phases. At a holding potential of -60 mV, FSH, and ACh responses involved combinations of inward and outward currents. Both FSH and ACh responses included a slow smooth inward component that was associated with an increase in membrane conductance, mainly to Cl- (S(in)). This current was strongly dependent on the osmolarity of the external solution: an increase in osmolarity of the HR solution of 18-20 mosM caused a 50% decrease in S(in). In contrast, a fast and transient Cl- current (F(in)) specifically elicited by ACh was not dependent on osmolarity. Both, F(in) and S(in) currents required the presence of follicular cells, since defolliculation using three different methods abolished all the response to FSH and at least four components of the ACh responses. The membrane channels carrying F(in) and oscillatory Cl- currents elicited by stimulation of ACh or serum receptors, were much more permeable to I- and Br- than Cl-, whereas S(in) channels were equally permeable to these anions. Unlike the oscillatory Cl- currents generated in the oocyte itself, S(in) and F(in) currents in follicle-enclosed oocytes were not abolished by chelation of intracellular Ca2+, either with EGTA or BAPTA, which suggests that intracellular Ca2+ does not play a critical role in the activation of these currents. Our experiments show that S(in) and F(in) currents are quite distinct from the previously characterized oscillatory Cl- responses of oocytes. Moreover, the results strongly suggest that the FSH and ACh receptors, the Cl- channels mediating the F(in) and S(in) currents, together with the necessary elements for their activation, are all located in the follicular cells and not in the oocyte. Many aspects of follicular cell physiology in Xenopus laevis, and other species, are regulated by hormones and neurotransmitters, including FSH and ACh. The follicular Cl- currents described in this paper may play an important role in the follicular cell-oocyte development.  相似文献   

12.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques.The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is ?90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero.Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore.The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10?5 M.It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

13.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques. The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is -90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero. Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore. The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10(-5) M. It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

14.
The objective was to compare various activation protocols on developmental potential of vitrified bovine oocytes. Bovine oocytes matured in vitro for 23 h were vitrified with EDFSF30 in open pulled straws. After warming, they were cultured in vitro for 1 h, followed by parthenogenetic activation. Vitrified-warmed oocytes had a morphologically normal rate similar to that of controls (nonvitrified oocytes cultured in vitro for 24 h; 98.6% vs. 100%, P > 0.05). When vitrified-warmed oocytes were first activated with 7% ethanol for 5 min and then incubated in 6-dimethylaminopurin (6-DMAP) for 4 h, cleavage and blastocyst rates were 41.2% and 23.2%, respectively, which were lower than those of controls (77.5% and 42.0%, P < 0.05). Subsequently, we varied the ethanol concentration to increase the effectiveness of parthenogenetic activation. When either 5%, 6%, 7%, 8%, 9%, 10%, or 11% ethanol alone (for 5 min) or in combination with 6-DMAP (4 h) was used to activate vitrified-warmed oocytes, cleavage rates ranged from 22.3% to 61.1% and blastocyst rates ranged from 1.1% to 30.6%. These rates were optimized when oocytes were treated with 9% ethanol plus 6-DMAP; this was verified in experiments evaluating other activation protocols with 9% ethanol, calcium ionophore A23187, or ionomycin alone, or in combination with DMAP or cycloheximide (CHX). In conclusion, the oocyte activation protocol affected developmental capacity of vitrified bovine oocytes; 9% ethanol (5 min) followed by 6-DMAP (4 h) promoted optimal parthenogenetic activation.  相似文献   

15.
Electrical Properties of Toad Oocytes During Maturation and Activation   总被引:2,自引:2,他引:0  
The full-grown oocytes of the toad Bufo bufo japonicus , whether in follicular layer or not, had a membrane potential of about -50 mV in De Boer's solution (DB), but underwent a deep hyper-polarization of up to -90 mV when pretreated with Ca, Mg-free EDTA-solution. Regardless of the magnitude of their resting potentials, the defolliculated oocytes exposed to progesterone underwent a gradual depolarization before the germinal vesicle breakdown and retained membrane potential at a level of -10 mV until 18 hr post hormone treatment (PHT), the stage of the second meiotic metaphase. A positive-going activation potential of a magnitude of 70 mV was recorded in the oocytes when pricked at 18 hr PHT as well as in uterine eggs 3–5 min after insemination. A low magnitude of activation potential in response to pricking was recorded in 63% of the oocytes at 13 hr PHT, and premature oocytes exhibiting the activation potential always underwent cortical granule breakdown (CGBD) and perivitelline space formatión. Oocytes where the germinal vesicle had been removed before the hormone treatment exhibited an activation potential and underwent CGBD in response to pricking at 18 hr PHT, whereas those pulse-treated with cycloheximide (10 μg/ml) during the 8–11 hr PHT exhibited neither of these cortical responses. These results indicate that the syntheses of proteins independent of germinal vesicle taking place at 9–11 hr PHT enable the oocytes to undergo cortical responses.  相似文献   

16.
Y Iwao 《Developmental biology》1989,134(2):438-445
At fertilization, the egg of the primitive urodele, Hynobius nebulosus, produced a fertilization potential which rose from -12 to +47 mV. A similar activation potential was elicited by pricking with a needle, by applying A23187, or by electric shock. The potential change was mediated by an increased permeability to Cl-. Clamping the egg's membrane potential at +40 mV blocked fertilization, while clamping at +20 mV induced polyspermy. These results indicated the occurrence of an electrical polyspermy block, typical of anurans, but atypical of urodeles. Furthermore, Hynobius eggs fertilized by natural mating incorporated only one sperm nucleus, and experimentally polyspermic eggs underwent multipolar division. Accessory sperm did not degenerate in the egg cytoplasm, indicating lack of an intracellular polyspermy block. By comparison, fertilization of Bufo japonicus (anuran) was also voltage dependent, whereas that of Cynops pyrrhogaster (urodele) was voltage independent. Thus polyspermy prevention mechanisms in Hynobius closely resemble those of anuran amphibians and differ from those of higher urodeles.  相似文献   

17.
Injections of cytosolic preparations from mammalian sperm into oocytes have been shown to trigger calcium [Ca2+]i oscillations and initiate activation of development. Recently, a protein isolated from hamster sperm has been suggested to be involved in the generation of these oscillations and it was named "oscillin." The human homologue of hamster oscillin is glucosamine 6-phosphate isomerase (GPI, EC no. 5.3.1.10), an enzyme so far described to be involved in hexose phosphate metabolism. To assess the role of GPI on Ca2+ signaling, a human recombinant protein was generated in a prokaryotic system and injected into fura-2-dextran-loaded metaphase II (MII) mouse oocytes. Injection of recombinant GPI failed to induce Ca2+ responses in 12/12 injected MII oocytes despite the fact that the recombinant GPI was active as assessed by an enzymatic assay. Injection of buffer (0/6 oocytes) or fructose-6-phosphate, a product of GPI enzymatic reaction (0/5 oocytes), also failed to initiate Ca2+ responses. Conversely, injections of sperm cytosolic factor induced [Ca2+]i oscillations in all 17/17 oocytes. In addition, injection of recombinant GPI or GPI mRNA failed to induce parthenogenetic activation (0/30 oocytes). Immunofluorescence studies using an anti-GPI polyclonal antibody (GK) resulted in localization of GPI to the sperm's equatorial region. Incubation of the GK antibody with sperm extracts failed to block the [Ca2+]i responses induced by these extracts. Moreover, near complete depletion of GPI from sperm fractions by immunoprecipitation did not impair the ability of these fractions to induce [Ca2+]i oscillations. In summary, our results support the role of a sperm cytosolic component(s) in the generation of [Ca2+]i oscillations during mammalian fertilization, although a protein other than GPI/oscillin is likely to be the active calcium releasing factor.  相似文献   

18.
In this report we show that the first event of activation in the human oocyte, the Fertilization current (FC), is a slow transient outward current of 300 pA, which induces a gradual hyperpolarization of the plasma membrane from –20mV to –60mV, 60–120 min after insemination, followed by a repolarization to –20mV. Activation currents (AC) of 600-2,500 pA, induced by exposure to the calcium ionophore A23187 or by microinjection of InsP3 into the cytosol, are also outward. The AC are inhibited by preloading oocytes with EGTA suggesting they are calcium dependent. Since AC are 2–10-fold the amplitude of the FC the fertilizing spermatozoon in the human only activates a portion of the primary elements stored in the oocyte for triggering metabolic depression. Oocyte activation in the human resembles that in the hamster rather than other mammals or invertebrates studied to date. © 1994 Wiley-Liss, Inc.  相似文献   

19.
We have investigated the role of intracellular Ca2+ in the opening of capacitative Ca2+ entry (CCE) channels formed with rat TRP4 (rTRP4) using Xenopus oocytes. In rTRP4-expressing oocytes pretreated with thapsigargin, perfusion with A23187, a Ca2+ ionophore, significantly potentiated the delayed phase of the CCE-mediated Cl- current response evoked by extracellular perfusion with Ca2+, without affecting the transient phase of CCE response. In control oocytes, the potentiation of delayed CCE response by A23187 was not significant. Using cut-open recording in combination with artificial intracellular perfusion of oocytes, CCE-mediated Cl- response was recorded at controlled cytosolic Ca2+ concentrations. Intracellular perfusion with a Ca2+ free solution containing 10 mM EGTA abolished most of the CCE responses of both non-injected and rTRP4-expressing oocytes. The native CCE response was not fully recovered by subsequent increases in the intracellular Ca2+ concentration up to 300 nM. However, CCE response of the rTRP4-expressing oocytes was restored at an internal Ca2+ concentration of 110 nM. Blockade of endogenous Cl- channels with anion channel blocker isolated Ca2+ current flowing through CCE channels and clarified the difference in the sensitivity to an internal Ca2+ concentration. These findings indicate that recombinant CCE channels formed with rTRP4 are positively regulated by cytosolic Ca2+ at higher sensitivity compared to oocyte-endogenous CCE channels.  相似文献   

20.
The complex morphology of the mammalian lung complicates characterization of solute transport across the intact alveolar epithelium. We impaled the subpleural alveolar epithelium with microelectrodes and measured the transepithelial potential difference (PD) of the liquid-filled vascular-perfused left lobe of the rat lung. When the air space was filled entirely with Krebs-Ringer-bicarbonate, the PD was 4.7 mV (lumen negative). The PD was not affected significantly by agents that modify either Na+ or Cl- transport, but replacement of luminal Cl- with gluconate resulted in a fourfold hyperpolarization, a response also noted for large airways. When the airways were blocked by an immiscible nonconducting fluorocarbon, basal PD was not different from unblocked lobes (4.0 mV) but was inhibited 73% by luminal amiloride. Cl(-)-free Krebs-Ringer-bicarbonate blocked in the alveoli with fluorocarbon did not induce hyperpolarization. This result suggests that 1) Cl- permselectivity of the alveolar epithelium is less than that of large airway epithelium and 2) airway PD dominates the voltage across the liquid-filled lung, even when measurements are made from alveoli. When airways are blocked by fluorocarbon, the PD across the alveolar epithelium is largely dependent on Na+ flow through a path with amiloride-sensitive channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号