首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The secretory phospholipase A2 (sPLA2) family in mammals contains more than 10 enzymes. In this study, we examined by immunohistochemistry the localization of six sPLA2s (IIA, IID, IIE, IIF, V and X) in human heart, kidney, liver and stomach. In normal hearts, sPLA2-IIA was detected in coronary vascular smooth muscle cells (VSMC) and sPLA2-V in cardiomyocytes beneath the endocardium. In infarcted hearts, expression of these two enzymes was markedly increased in damaged cardiomyocytes, and expression of sPLA2-IID and-IIE, which was undetectable in normal hearts, was elevated in damaged cardiomyocytes and VSMC, respectively. In infarcted kidneys, sPLA2-IIA and-V were markedly induced in the uriniferous tubular epithelium. In livers affected by viral hepatitis, sPLA2-IIA and-V were expressed in hepatocytes with fatty degeneration. In the gastric glands exhibiting intestinal metaplasia, sPLA2-IIA was localized in the glandular base, sPLA2-IID and-V in the glandular body epithelium, sPLA2-IIE and-IIF in goblet cells in the foveolar epithelium, and sPLA2-X in both glandular body epithelial cells and foveolar epithelial goblet cells. In the gastric submucosal tissues, sPLA2-IIA and-IIE were located in VSMC and sPLA2-V was in the interstitial fibroblasts. In addition, sPLA2-IIA,-IIE,-IIF and-X were highly expressed in gastric signet ring cell carcinoma. Thus, individual sPLA2s exhibit unique cellular localizations in each tissue, suggesting their distinct roles in pathophysiology.  相似文献   

2.
3.
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

4.
Group IID secretory phospholipase A(2) (sPLA(2)-IID), a heparin-binding sPLA(2) that is closely related to sPLA(2)-IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA(2)-IIA. Here we identified the residues of sPLA(2)-IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA(2)-IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA(2)s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA(2)-IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA(2)-IID and sPLA(2)-X constitutively, the former of which was negatively regulated by IL-1. sPLA(2)-IID, but not other sPLA(2) isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA(2)-IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA(2)-IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions.  相似文献   

5.
The heparin-binding group II subfamily of secretory phospholipase A(2)s (sPLA(2)s), such as sPLA(2)-IIA and -IID, augments stimulus-induced arachidonic acid (AA) release through the cellular heparan sulfate proteoglycan (HSPG)-dependent pathway when transfected into HEK293 cells. Here we show that the closest homolog, sPLA(2)-IIE, also promotes stimulus-induced AA release and prostaglandin (PG) production similar to those elicited by HSPG-dependent sPLA(2)s. Confocal laser microscopic analysis demonstrates the location of sPLA(2)-IIE in cytoplasmic punctate compartments. sPLA(2)-IIE also enhances leukotriene (LT) production and granule exocytosis by RBL-2H3 mastocytoma cells. Expression of sPLA(2)-IIE was highly upregulated in mice injected with lipopolysaccharide (LPS) and in mice with experimental atopic dermatitis. These observations suggest that this enzyme plays a role in the inflammatory process, as proposed for other group II subfamily sPLA(2)s.  相似文献   

6.
7.
We analyzed the ability of a diverse set of mammalian secreted phospholipase A(2) (sPLA(2)) to release arachidonate for lipid mediator generation in two transfected cell lines. In human embryonic kidney 293 cells, the heparin-binding enzymes sPLA(2)-IIA, -IID, and -V promote stimulus-dependent arachidonic acid release and prostaglandin E(2) production in a manner dependent on the heparan sulfate proteoglycan glypican. In contrast, sPLA(2)-IB, -IIC, and -IIE, which bind weakly or not at all to heparanoids, fail to elicit arachidonate release, and addition of a heparin binding site to sPLA(2)-IIC allows it to release arachidonate. Heparin nonbinding sPLA(2)-X liberates arachidonic acid most likely from the phosphatidylcholine-rich outer plasma membrane in a glypican-independent manner. In rat mastocytoma RBL-2H3 cells that lack glypican, sPLA(2)-V and -X, which are unique among sPLA(2)s in being able to hydrolyze phosphatidylcholine-rich membranes, act most likely on the extracellular face of the plasma membrane to markedly augment IgE-dependent immediate production of leukotriene C(4) and platelet-activating factor. sPLA(2)-IB, -IIA, -IIC, -IID, and -IIE exert minimal effects in RBL-2H3 cells. These results are also supported by studies with sPLA(2) mutants and immunocytostaining and reveal that sPLA(2)-dependent lipid mediator generation occur by distinct (heparanoid-dependent and -independent) mechanisms in HEK293 and RBL-2H3 cells.  相似文献   

8.
9.
Hydrolysis of surfactant phospholipids by secreted phospholipases A(2) (sPLA(2)) contributes to surfactant dysfunction in acute respiratory distress syndrome. The present study demonstrates that sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X efficiently hydrolyze surfactant phospholipids in vitro. In contrast, sPLA(2)-IIC, -IID, -IIE, and -IIF have no effect. Since purified surfactant protein A (SP-A) has been shown to inhibit sPLA(2)-IIA activity, we investigated the in vitro effect of SP-A on the other active sPLA(2) and the consequences of sPLA(2)-IIA inhibition by SP-A on surfactant phospholipid hydrolysis. SP-A inhibits sPLA(2)-X activity, but fails to interfere with that of sPLA(2)-V. Moreover, in vitro inhibition of sPLA(2)-IIA-induces surfactant phospholipid hydrolysis correlates with the concentration of SP-A in surfactant. Intratracheal administration of sPLA(2)-IIA to mice causes hydrolysis of surfactant phosphatidylglycerol. Interestingly, such hydrolysis is significantly higher for SP-A gene-targeted mice, showing the in vivo inhibitory effect of SP-A on sPLA(2)-IIA activity. Administration of sPLA(2)-IIA also induces respiratory distress, which is more pronounced in SP-A gene-targeted mice than in wild-type mice. We conclude that SP-A inhibits sPLA(2) activity, which may play a protective role by maintaining surfactant integrity during lung injury.  相似文献   

10.
We herein demonstrate that mast cells express all known members of the group II subfamily of secretory phospholipase A2 (sPLA2) isozymes, and those having heparin affinity markedly enhance the exocytotic response. Rat mastocytoma RBL-2H3 cells transfected with heparin-binding (sPLA2-IIA, -V, and -IID), but not heparin-nonbinding (sPLA2-IIC), enzymes released more granule-associated markers (beta-hexosaminidase and histamine) than mock- or cytosolic PLA2alpha (cPLA2alpha)-transfected cells after stimulation with IgE and Ag. Site-directed mutagenesis of sPLA2-IIA and -V revealed that both the catalytic and heparin-binding domains are essential for this function. Confocal laser and electron microscopic analyses revealed that sPLA2-IIA, which was stored in secretory granules in unstimulated cells, accumulated on the membranous sites where fusion between the plasma membrane and granule membranes occurred in activated cells. These results suggest that the heparin-binding sPLA2s bind to the perigranular membranes through their heparin-binding domain, and lysophospholipids produced in situ by their enzymatic action may facilitate the ongoing membrane fusion. In contrast to the redundant role of sPLA2-IIA, -IID, and -V in the regulation of degranulation, only sPLA2-V had the ability to markedly augment IgE/Ag-stimulated immediate PGD2 production, which reached a level comparable to that elicited by cPLA2alpha. The latter observation reveals an unexplored functional segregation among the three related isozymes expressed in the same cell population.  相似文献   

11.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

12.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

13.
Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s (sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune suppression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia, and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we overview current understanding of the properties and functions of these sPLA2s and their underlying lipid pathways in vivo.  相似文献   

14.
15.
16.
Secreted phospholipase A?s form a large family of proteins involved in diverse biological and pathophysiological processes. Group IIE secreted phospholipase A? (sPLA?-IIE) is one of the latest discovered members of this family. Previous studies revealed that the expression profile of sPLA?-IIE was restricted to a few tissue types including brain, heart, lung and placenta compared to the broad expression profile of other isoforms. Accumulating evidence suggests that sPLA?-IIE might play a pivotal role in the progression of inflammatory processes. However, functional study of sPLA?-IIE was hindered by the low yield of soluble expressed protein. In this study, we have expressed human and mouse sPLA?-IIE in Escherichia coli in the form of inclusion bodies. The inclusion bodies were dissolved, purified and refolded in a step-wise dialysis approach and further purified. We obtained soluble and active proteins for human and mouse sPLA?-IIE with a final yield of 1.1 and 1.2 mg/500 mL bacterial culture, respectively. The refolded sPLA?-IIEs exhibited similar calcium and pH dependence of their enzymatic activity with those expressed in COS cells. This protein expression and purification protocol will facilitate the further structural and functional studies of human and mouse sPLA?-IIEs.  相似文献   

17.
Although mRNA expression of group IIA secretory phospholipase A2 (sPLA2-IIA) has been implicated in responses to injury in the CNS, information on protein expression remains unclear. In this study, we investigated temporal and spatial expression of sPLA2-IIA mRNA and immunoreactivity in transient focal cerebral ischemia induced in rats by occlusion of the middle cerebral artery. Northern blot analysis showed a biphasic increase in sPLA2-IIA mRNA expression following 60-min of ischemia-reperfusion: an early phase at 30 min and a second increase at a late phase ranging from 12 h to 14 days. In situ hybridization localized the early-phase increase in sPLA2-IIA mRNA to the affected ischemic cortex and the late-phase increase to the penumbral area. Besides sPLA2-IIA mRNA, glial fibrillary acidic protein (GFAP) and cyclo-oxygenase-2 mRNAs, but not cytosolic PLA2, also showed an increase in the penumbral area at 3 days after ischemia-reperfusion. Immunohistochemistry of sPLA2-IIA indicated positive cells in the penumbral area similar to the GFAP-positive astrocytes but different from the isolectin B4-positive microglial cells. Confocal microscopy further confirmed immunoreactivity of sPLA2-IIA in reactive astrocytes but not in microglial cells. Taken together, these results demonstrate for the first time an up-regulation of the inflammatory sPLA2-IIA in reactive astrocytes in response to cerebral ischemia-reperfusion.  相似文献   

18.
19.
20.
目的为了构建人分泌型磷脂酶A2(secretaryphospholipaseA2,sPLA2-IIA)的有效表达系统,从胎脾中提取总RNA。方法采用RT-PCR方法扩增出编码sPLA2-IIA的基因定向地克隆于硫氧环蛋白基因融合表达载体pET32a的TrxA基因3′末端,构建符合读码框的融合表达载体pET32a-sPLA2-IIA。37℃下经IPTG诱导,hsPLA2-IIA融合蛋白在大肠杆菌BL21(DE3)中获得高效表达,表达产物以包涵体的形式存在。包涵体经8mol/L尿素溶解、复性后检测结果显示具有较高的催化活性并呈现剂量依赖关系。结论以大肠杆菌为宿主,成功表达了hsPLA2-IIA蛋白,为进一步进行hsPLA2-IIA的大量生产和功能研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号