首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipase activation requiring cyclic-3′,5′-adenosine monophosphate and ATP was demonstrated in crude fractions of human adipose tissue homogenates. Activation was totally blocked by addition of the specific protein kinase inhibitor. Levels of endogenous protein kinase were adequate to support clear-cut activation but in partially purified preparations addition of exogenous (rabbit muscle) kinase further enhanced activation. When tissue was treated with epinephrine prior to homogenization the degree of activation in partially purified fractions was distinctly reduced. The mechanism of activation of hormone-sensitive lipase in human adipose tissue is thus shown, like that in rat adipose tissue, to be linked to a cyclic AMP-dependent protein kinase.  相似文献   

2.
Hormone-sensitive lipase of rat adipose tissue was partially purified. The enzyme retained its capacity to be activated by cyclic AMP-dependent protein kinase throughout purification. When the partially purified 32P-labeled preparation was subjected to two-dimensional gel electrophoresis, the enzyme activity was found to be associated with a 32P-labeled protein of molecular weight 84 000. The result suggests that this 32P-labeled protein represents hormone-sensitive lipase or the catalytic subunit of the enzyme.  相似文献   

3.
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines.  相似文献   

4.
Extracts of rat tissues contain kinases which catalyze the conversion of glycogen synthease from the glucose 6-phosphate-independent (I) form to the glucose 6-phosphatate-dependent (D) form. These kinases were stimulated by adenosine 3':5' monophosphate (cyclic AMP). The glycogen synthase kinase activity ratio (activity in the absence of cyclic AMP divided by activity in the presence of cyclic AMP) varied from 0.28 to 0.97. The activity ratio for histone kinase in the same extracts ranged from 0.11 to 0.29. The levels of glycogen synthase kinase varied by a factor of 80 in the following rat tissues (given in order of decreasing enzyme activity): kidney, liver, stomach mucosa, lung, brain, heart, skeletal muscle, and adipose tissue. In the same tissues the levels of histone kinase varied by only a factor of 6 and did not correlate with the levels of glycogen synthase kinase. A modification of the method of Walsh et al. ((1971) J. Biol. Chem. 246, 1977-1985) was developed for purification of the heat-stable inhibitor of cyclic AMP-dependent protein kinases (inhibitor). The modified procedure resulted in good yields of highly purified inhibitor and was much simpler than the previously described procedure. This inhibitor completely inhibited cyclic AMP-dependent histone kinase activity of the extracts but much of the glycogen synthase kinase activity was not inhibited. The portion of glycogen synthase kinase that was insensitive to the inhibitor was: stomach mucosa, 95%; brain, 90%; liver, 82%; kidney, 81%; lung, 68%; adipose tissue, 65%; skeletal muscle, 63%; and heart, 54%. This histone kinase activity in the extracts and hte ratio of glycogen synthase kinase to histone kinase activity of purified catalytic subunit of the cyclic AMP-dependent protein kinase was used to calculate for each extract the glycogen synthase kinase activity contributed by the cyclic AMP-dependent protein kinase. Based on these calculations, the portion of the glycogen synthase kinase which was due to kinases independent of cyclic AMP was: kidney, 97%; liver, 91%; lung, 89%; brain, 87%, heart, 85%; stomach mucosa, 84%; adipose tissue, 38%; and skeletal muscle, 33%. A significant portion of the glycogen synthase kinase activity, but virtually none of the cyclic AMP-dependent histone kinase activity, of these extracts could be adsorbed to phosphocellulose columns. Liver extracts contained, in addition, a form of glycogen synthase kinase which was not adsorbed to phosphocellulose and which could be separated from the cyclic AMP-dependent protein kinase by additional chromatography. These studies demonstrate that kinases independent of cyclic AMP account for most of the glycogen synthase kinase activity of many tissues. The widespread distribution and high concentrations of these enzymes suggest that they are of physiological importance.  相似文献   

5.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated stoichiometrically by either cyclic AMP-dependent protein kinase or calmodulin-dependent multiprotein kinase from skeletal muscle, but not by five other protein kinases tested. The activity of tyrosine hydroxylase was elevated 3-fold by cyclic AMP-dependent protein kinase, but no activation was observed after phosphorylation by calmodulin-dependent multiprotein kinase. Phosphorylation produced by cyclic AMP-dependent protein kinase and calmodulin-dependent multiprotein kinase was additive, suggesting different sites of phosphorylation. This was confirmed by high-performance liquid chromatography analysis of tryptic phosphopeptides which demonstrated that the major sites phosphorylated by each protein kinase were distinct. A calmodulin-dependent multiprotein kinase that had identical properties and substrate specificity to the skeletal muscle enzyme was partially purified from rat pheochromocytoma. The possibility that this protein kinase is involved in the regulation of tyrosine hydroxylase activity in adrenergic tissue in vivo is discussed.  相似文献   

6.
A high level of cholesterol esterase activity, comparable to that of hormone-sensitive triglyceridase, has been demonstrated in rad adipose tissue. Essentially all of the activity was in the isolated adipocytes, primarily in the 100,000 times g supernatant fraction of the adipocytes. Cholesterol esterase activity in the 100,000 times g supernatant fraction was increased 40 plus or minus 16% by incubation with ATP (0.5 mM), Mg-2+ (1.25 mM), and cyclic adenosine 3':5'-monophosphate (cyclic AMP) (10 muM), conditions which also activated hormone-sensitive triglyceridase. Protein kinase inhibitor (rabbit skeletal muscle) blocked activation, and activation was restored by the addition of excess protein kinase (bovine skeletal muscle). In extracts prepared from adipocytes first incubated for 5 min with 10 muM epinephrine and 1 mM theophylline, there was no cyclic AMP-dependent cholesterol esterase activation, implying that the enzyme had been activated by a similar mechanism in the intact cell. The physiological role of this high level of cholesterol esterase activity in adipose tissue is unclear. Its relationship to hormone-sensitive triglyceride lipase, with which it extensively co-fractionates, and its possible involvement in fat mobilization remain to be determined.  相似文献   

7.
The reversible deactivation of chicken adipose tissue hormone-sensitive lipase is catalyzed by a lipase phosphatase. Heat-stable protein preparations from rat epididymal fat pads, chicken adipose tissue, and rabbit skeletal muscle inhibited lipase phosphatase activity. Phosphatase inhibitor preparations from rat adipose tissue did not inhibit the protein kinase-catalyzed activation of hormone-sensitive lipase, whereas inhibitor preparations from rabbit skeletal muscle were contaminated with protein kinase inhibitor.  相似文献   

8.
Glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransfase, EC 2.4.1.1) activity was found in mycelial extracts of Coprinus macrorhizus concurrently with decrease of glycogen content in mycelial cells. Incubation of the enzyme sample with cyclic AMP and ATP leads to a 3-fold activation of the glucogen phosphorylase activity. Activation of the enzyme partially purified through Sepharose 6B required a cellular fraction containing cyclic AMP-dependent protein kinase.  相似文献   

9.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

10.
Cyclic AMP dependent protein kinase has beeen identified in human skeletal muscle tissue. In crude muscle extracts the enzyme was 3--5 fold activated by cyclic AMP. The cyclic AMP-dependent activity (corresponding to the inactive holoenzyme) was completely inhibited by the heat stable inhibitor of protein kinase. Reciprocal changes of the cyclic AMP-dependent activity in skeletal muscle were observed after administration of epinephrine and insulin in vivo. Infusion of epinephrine in healthy volunteers increased the level of cyclic AMP and decreased the activity of the cyclic AMP-depenent form (i.e. the inactive form) of protein kinase. These changes were reversible after cessation of epinephrine administration. The results are consistent with an activation of protein kinase in vivo due to an epinephrine mediated increase of the concentration of cyclic AMP. I.v. injection of insulin had the opposite effect on the enzyme in skeletal muscle, leading to increased activity of the cyclic AMP-dependent form of protein kinase. Insulin had no effect on the level of cyclic AMP, but promoted a transient increase of cyclic GMP 1 min. after insulin injection. The effect by insulin on protein kinase cannot be related to the level of cyclic AMP or cyclic GMP.  相似文献   

11.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

12.
Efficiency of substrates for cholesterol esterase (EC 3.1.1.13) assay, and regulation of the activity were investigated in rat epididymal adipose tissue. The activity in the supernatant was activated by cyclic AMP-dependent protein kinase, cyclic AMP, ATP and Mg2+, both with micellar and liposomal substrates. However, the micellar substrate was more suitable for the assay than the liposomal with respect to Vmax and Km. Thus, the micellar substrate was employed. Pretreatment of the supernatant with exogenous cyclic AMP-dependent protein kinase enhanced the activity dose dependently, whereas that with cyclic AMP decreased the activity slightly. The cyclic AMP-dependent protein kinase activity in the assay mixture was within the range which can cause changes in cholesterol esterase activity. These results suggest that the amount of cyclic AMP-dependent protein kinase, rather than the cyclic AMP level, plays an important role in the regulation of cholesterol esterase in tissues with a high cholesterol esterase activity relative to the kinase activity, such as in adipose tissue.  相似文献   

13.
Effects of cyclic adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase were studied in sarcoplasmic reticulum prepared from cardiac and slow and fast (white) skeletal muscle. Cyclic AMP-dependent protein kinase failed to catalyze phosphorylation of fast skeletal muscle microsomes as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyclic AMP-dependent protein kinase was without effect on calcium uptake by these microsomes. Treatment of cardiac microsomes obtained from dog, cat, rabbit, and guinea pig with cyclic AMP-dependent protein kinase and ATP resulted in phosphorylation of a 22,000-dalton protein component in the amounts of 0.75, 0.25, 0.30, and 0.14 nmol of phosphorus/mg of microsomal protein, respectively. Calcium uptake by cardiac microsomes was stimulated 1.8- to 2.5-fold when microsomes were treated with cyclic AMP-dependent protein kinase. Protein kinases partially purified from bovine heart and rabbit skeletal muscle were both effective in mediating these effects on phosphorylation and calcium transport in dog cardiac sarcoplasmic reticulum. Slow skeletal muscle sarcoplasmic reticulum also contains a protein with a molecular weight of approximately 22,000 that can be phosphorylated by protein kinase. Phosphorylation of this component ranged from 0.005 to 0.016 nmol of phosphorous/mg of microsomal protein in dog biceps femoris. A statistically significant increase in calcium uptake by these membranes was produced by the protein kinase. Increases in protein kinase-catalyzed phosphorylation of a low molecular weight microsomal component and in calcium transport by sarcoplasmic reticulum of cardiac and slow skeletal muscle may be related to the relaxation-promoting effects of epinephrine seen in these types of muscle. Conversely, the absence of a relaxation-promoting effect of epinephrine in fast skeletal muscle may be associated with the lack of effect of cyclic AMP and protein kinase on calcium transport by the sarcoplasmic reticulum of this type of muscle.  相似文献   

14.
Diglyceride lipase of chicken adipose tissue was found to be activated by cyclic AMP-dependent protein kinase to the same extent as hormone-sensitive triglyceride lipase (3-to 10-fold) when lipase assays were carried out in buffers of low ionic strength. Sodium phosphate (50 mM) or sodium chloride (100 mM) preferentially enhanced the basal (nonactivated) form of diglyceride lipase, which minimized the apparent activation by protein kinase. The activated diglyceride lipase was readily deactivated by a pure protein phosphatase from bovine heart (MW 35,000) and the deactivated enzyme was then reactivated by protein kinase.  相似文献   

15.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743-745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system. We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10(-5) M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase. Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems. The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane phosphorylation as a regulator of membrane functions including those that may control cellular differentiation.  相似文献   

16.
Plasma membranes can be isolated without disruption of cells by the plasma membrane vesiculation technique (Scott, R.E. (1976) Science 194, 743–745). A major advantage of this technique is that it avoids contamination of plasma membranes with intracellular membrane components. Using this method, we prepared plasma membranes from L6 myoblasts grown in tissue culture and studied the characteristics of the protein phosphorylation system.We found that these plasma membrane preparations contain protein kinase which is tightly bound to the membrane and cannot be removed by washing in EDTA or in high ionic strength salt solutions. This protein kinase activity can catalyze the phosphorylation of several exogenous substrates with decreasing efficiency as acceptors of phosphate: calf thymus histones f2b, protamine and caseine. Cyclic AMP causes a dose-dependent stimulation of protein kinase activity; the highest stimulation (4-fold) is achieved at concentration 10?5 M cyclic AMP. Cyclic AMP-dependent stimulation can be completely inhibited by heat-stable protein kinase inhibitor isolated from rabbit skeletal muscle. On the other hand, cyclic GMP does not affect the activity of protein kinase.Plasma membrane-bound protein kinase also catalyzes the phosphorylation of endogenous membrane protein substrates and this is also stimulated by addition of cyclic AMP. Analysis of plasma membrane proteins by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that specific polypeptides are phosphorylated by cyclic AMP-independent and by cyclic AMP-dependent protein kinase systems.The results of these studies demonstrate the presence of endogenous cyclic AMP-dependent and -independent protein phosphorylating systems (enzyme activity and substrates) in purified plasma membrane preparations. These data provide a basis for further investigations on the role of plasma membrane missing data  相似文献   

17.
Swine adipose tissue hormone-sensitive lipase, purified 475-fold to 10% protein purity, has been identified as a polypeptide of Mr = 84,000. The enzyme has high specific activity against tri-, di- and monoacylglycerols, as well as cholesterol esters, and is inhibited by millimolar NaF, and micromolar HgCl2 and DFP. The enzyme polypeptide serves as a substrate for cyclic AMP-dependent protein kinase. The characteristics of the hormone-sensitive lipase from swine adipose tissue are similar to those reported previously for the enzyme from rat. They differ from those reported for the lipase from chicken adipose tissue, and possible reasons for these differences are discussed.  相似文献   

18.
《Insect Biochemistry》1991,21(2):137-144
Protein phosphatase activity in tick salivary glands was inhibited by heat-stable protein(s) from tick salivary glands as well as by an inhibitor protein from rabbit skeletal muscle. Inhibitor activity was increased after phosphorylation of inhibitor proteins with the catalytic subunit (C) of cyclic AMP-dependent protein kinase and ATP. C inhibited protein phosphatase activity of the partially purified enzyme, while purified cyclic AMP-dependent protein kinase inhibitor protein prevented inhibition of tick salivary gland protein phosphatase by C suggesting that the inhibitor phosphoprotein coelutes with the partially purified enzyme. A soluble heat-stable protein with a molecular weight of approx. 26 kDa was phosphorylated by C, suggesting that a protein phosphatase inhibitor protein similar to inhibitor-1 in mammalian tissue, is present in tick salivary glands.  相似文献   

19.
A protein kinase that catalyzes the phosphorylation of histone was partially purified from rat thymus, and the rate of histone phosphorylation was stimulated three- to fourfold by 1 × 10?6 M adenosine 3′,5′-monophosphate (cyclic AMP). Thymic protein kinase was more active than the enzyme from spleen. Histone fractions f1, f2a, f2b, and f3 were all capable of serving as phosphate acceptors for the thymic protein kinase, and the rate of phosphorylation of each fraction was stimulated by cyclic AMP. The ability of various 3′,5′-mononucleotides to stimulate protein kinase activity was compared. Inosine 3′,5′-monophosphate (cyclic IMP) was the most effective substitute for cyclic AMP. The cellular distribution of cyclic AMP-dependent protein kinase and adenylate cyclase activities in the thymus was determined. Cyclic AMP-dependent protein kinase activity is present in both small thymocytes and residual thymic tissue. The specific activity of protein kinase from residual tissue, both for basal and cyclic AMP-stimulated enzyme, was greater than that of enzyme from small thymocytes. In contrast to this, adenylate cyclase activity is predominately localized in the thymocytes.  相似文献   

20.
The activity of a pigeon adipose tissue hormone-sensitive triacylglycerol lipase preparation was increased from 2- to 5-fold by the presence of phosphatidylethanolamine in assays with three different methods of preparing triolein substrates. Phosphatidylethanolamine from egg yolk produced the greatest stimulation of lipase activity; the stimulation was concentration-dependent but was not time-dependent. A comparable increase in triacylglycerol lipase activity due to phosphatidylethanolamine was also observed with enzyme preparations from chicken and rat adipose tissue. Phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, cardiolipin, sphingomyelin, Triton X-100 and sodium dodecyl sulfate all inhibited enzyme activity. Phosphatidylethanolamine had no effect on acid lipase activity in the pigeon adipose tissue preparation. Preincubation of the pigeon adipose tissue lipase with ATP, cyclic AMP and protein kinase resulted in a 2.15-fold activation of hydrolase activity determined in the absence of phosphatidylethanolamine. In contrast, non-activated and protein kinase-activated forms of the lipase were characterized as having very nearly the same activity in assays with substrate preparations containing phosphatidylethanolamine. The phosphatidylethanolamine-dependent stimulation of lipase activity was characterized kinetically as being due to an increase in maximal velocity. The modulation of the adipose tissue hormone-sensitive lipase activity by phospholipids could be involved in the hormonal regulation of lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号