首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

2.
Presented in this study are data derived from a unique cohort of patients both with and without cancer, for whom we not only have serum samples, allowing us to investigate systemic factors impacting on skeletal muscle maintenance, but also primary skeletal muscle cultures giving us a model to mimic the in vivo muscle milieu. Possible local effects of autocrine/paracrine and endocrine IGF system components impacting on myoblast growth and differentiation could therefore be assessed. We report for the first time that the decrease in myoblast stem cell numbers seen with normal aging is lost in cancer patients. We further report that serum IGF-I, IGF-II and IGFBP-3 all show positive correlations with myoblast retrieval in control patients, but that with the exception of IGFBP-3 these correlations are lost in malignancy. Indeed IGF-II switches to a negative correlation with myotube formation in malignancy. Furthermore we provide initial evidence to suggest that there is an apparent altered regulation of local IGFBP-3 production during malignancy which may enable satellite cell proliferation, stem cell infiltration or both. Finally we show the importance of investigations not only monitoring the systemic impact of serum factors on skeletal muscle responses but also critically assessing the role that locally produced muscle IGFBP-3 may have on the systemic environment.  相似文献   

3.
Summary We previously proposed the hypothesis that the primary expression of the defect in X-linked Duchenne muscular dystrophy (DMD) occurred in the myoblast, or muscle precursor cell. This was based on the observation that the number of viable myoblasts obtained per gram DMD muscle tissue was greatly reduced and those that grew in culture had decreased proliferative capacity and an aberrant distended flat morphology. Here we test that hypothesis by determining whether the expression of the myoblast defect is X-linked. Muscle cells were obtained from five doubly heterozygous carriers of two X-linked loci, DMD and glucose-6-phosphate dehydrogenase (G6PD), and compared with those from five sex-and age-matched controls heterozygous for G6PD only. A total of 1,355 individual clones were determined to be muscle and evaluated at the single cell level for proliferative capacity, morphology, and G6PD isozyme expression. The results demonstrate that the proportion of defective myoblast clones is significantly increased in DMD carriers. However, since this cellular defect does not consistently segregate with a single G6PD phenotype in the myoblast clones derived from any of the carriers, it is unlikely to be the primary expression of the DMD mutant allele.  相似文献   

4.
R Montesano  G Schaller  L Orci 《Cell》1991,66(4):697-711
We have designed an in vitro system in which Madin-Darby canine kidney (MDCK) epithelial cells are cocultured in collagen gels with fibroblasts under conditions precluding heterocellular contact. Using this experimental approach, we have obtained evidence that fibroblast-derived soluble factors play a crucial role in the control of epithelial morphogenesis. First, MDCK cells suspended alone in collagen gels form spherical cysts, whereas in the presence of fibroblasts they form branching tubules. Second, MDCK cells grown as a monolayer on fibroblast-containing collagen gels invade the underlying matrix, within which they form a network of tubules. Third, fibroblast-conditioned medium mimics the effects of coculture by eliciting tubulogenesis by MDCK cells. These results demonstrate the involvement of diffusible paracrine factors in morphogenetic epithelial-mesenchymal interactions and provide a strategy for their molecular characterization.  相似文献   

5.
Cultured fibroblasts secrete an 88-kDa serine protease that cleaves insulin-like growth factor binding protein-5 (IGFBP-5). Because IGFBP-5 has been shown to regulate IGF-I actions, understanding the chemical identity and regulation of this protease is important for understanding how IGF-I stimulates anabolic functions. The protease was purified from human fibroblast-conditioned medium by hydrophobic interaction, lectin affinity, and heparin Sepharose affinity chromatography followed by SDS-polyacrylamide gel electrophoresis. An 88-kDa band was excised and digested with lysyl-endopeptidase. Sequencing of the high pressure liquid chromatography-purified peptides yielded the complement components C1r and C1s. To confirm that C1r/C1s accounted for the proteolytic activity in the medium, immunoaffinity chromatography was performed. Most of the protease activity adhered to the column, and the eluant was fully active in cleaving IGFBP-5. SDS-polyacrylamide gel electrophoresis with silver staining showed two bands, and IGFBP-5 zymography showed a single 88-kDa band. Amino acid sequencing confirmed that the 88-kDa band contained only C1r and C1s. C1r in the fibroblast medium underwent autoactivation, and the activated form cleaved C1s. C1s purified from the conditioned medium cleaved C(4), a naturally occurring substrate. The purified protease cleaved IGFBP-5 but had no activity against IGFBP-1 through -4. C1 inhibitor, a protein known to inhibit activated C1s, was shown to inhibit the cleavage of IGFBP-5 by the protease in the conditioned medium. In summary, human fibroblasts secrete C1r and C1s that actively cleave IGFBP-5. The findings define a mechanism for cleaving IGFBP-5 in the culture medium, thus allowing release of IGF-I to cell surface receptors.  相似文献   

6.
As the molecular basis of Duchenne Muscular Dystrophy (DMD) was being discovered, increasing focus was placed on the mechanisms of progressive failure of myoregeneration. In this study, we propose a pathogenesis model for DMD, where an autocrine growth factor release of TGF-beta1-from necrotic myofibers-could contribute to the increasing loss of muscle regeneration. In fact, we report evidence that DMD myoblasts reduce their proliferation rate, in time and later cultures; in connection with this, we observed TGF-beta1 increase in conditioned media of DMD myoblasts, able to control the myoblast growth by reducing fusion and differentiation of DMD satellite cells.  相似文献   

7.
Fusion of monomyoblasts to form multinucleated myotubes is a prerequisite for skeletal myogenesis, and muscle fibroblast–myoblast interaction plays an important role in the process; however, relative studies are limited. In the current study, SLD (sex‐linked dwarf) chicken, a myogenic deficient model caused by GH (growth hormone)–IGF‐I axis deficiency due to dw gene mutation, was introduced to study effects of fibroblasts on myodifferentiation. Using a membrane insert co‐culture system, we identified that, compared with SLD fibroblasts, normal fibroblasts promoted myogenesis of primary SLD myoblasts by improving their differentiation potential in a paracrine fashion, and this effect was involved in both primary and secondary fusions. This process was also coupled with up‐regulation of β1 integrin, and reduced myogenesis, resulting from siRNA interference demonstrated that β1 integrin was required for the response. Further, in terms of genetic discrepancy between normal and SLD fibroblasts, GH–IGF‐I signalling might play a role in this paracrine control.  相似文献   

8.
9.
As the molecular basis of Duchenne Muscular Dystrophy (DMD) was being discovered, increasing focus was placed on the mechanisms of progressive failure of myoregeneration. In this study, we propose a pathogenesis model for DMD, where an autocrine growth factor release of TGF‐β1—from necrotic myofibers—could contribute to the increasing loss of muscle regeneration. In fact, we report evidence that DMD myoblasts reduce their proliferation rate, in time and later cultures; in connection with this, we observed TGF‐β1 increase in conditioned media of DMD myoblasts, able to control the myoblast growth by reducing fusion and differentiation of DMD satellite cells. J. Cell. Biochem. 76:118–132, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Double-muscling (DM) is a hereditary (apparently single-gene) skeletal muscle hyperplasia which occurs in beef cattle. In order to investigate the cellular basis of this phenotype, cell cultures from developing muscle tissue of normal and DM fetal calves were studied. In cultures composed of both myogenic cells and nonmyogenic, fibroblast-like cells, DM myoblasts exhibited a prolonged proliferative phase. This resulted in delayed, but increased production of fused myotubes in the DM cultures. "Conditioned" media experiments indicated that the fibroblast-like cells in the cultures produced soluble myoblast growth factor activity. Both normal and DM fibroblast-like cells produced the growth factor activity, but the mutant fibroblast-like cells produced a greater level of such activity. The conditioned media failed to increase proliferation of bovine muscle fibroblasts and did not stimulate quiescent Swiss 3T3 cells to divide, indicating that the myoblast trophic activity is distinct from bFGF or PDGF. Also, the myotrophic activity present in the conditioned media acted in an additive fashion with saturating doses of bFGF and of IGF-1, suggesting that the activity is not due to either of these known myogenic growth factors. Both normal and DM fibroblast-like cells produced myoblast trophic activity when the cells were proliferating, but did not produce myotrophic activity when the fibroblasts were mitotically quiescent. These findings indicate that the proliferative state of the connective tissue cells in muscle may have a controlling influence on myoblast proliferation and differentiation during development.  相似文献   

11.
Insulin-like growth factor binding proteins (IGFBPs) have been shown to serve as carrier proteins for the insulin-like growth factors (IGFs) and to modulate their biologic effects. Since extracellular matrix (ECM) has been shown to be a reservoir for IGF-I and IGF-II, we examined the ECM of cultured human fetal fibroblasts and found that IGFBP-5 was incorporated intact into ECM, while mostly inert proteolytic fragments were found in the medium. In contrast, two other forms of IGFBP that are secreted by these cells were either present in ECM in minimal amounts (IGFBP-3) or not detected (IGFBP-4). Likewise, when purified IGFBPs were incubated with ECM, IGFBP-5 bound preferentially. IGFBP-5 was found to bind to types III and IV collagen, laminin, and fibronectin. Increasing salt concentrations inhibited the binding of IGFBP-5 to ECM and accelerated the release of IGFBP-5 from ECM, suggesting an ionic basis for this interaction. ECM-associated IGFBP-5 had a sevenfold decrease in affinity for IGF-I compared to IGFBP-5 in solution. Furthermore, when IGFBP-5 was present in cell culture substrata, it potentiated the growth stimulatory effects of IGF- I on fibroblasts. When IGFBP-5 was present only in the medium, it was degraded to a 22-kD fragment and had no effect on IGF-I-stimulated growth. We conclude that IGFBP-5 is present in fibroblast ECM, where it is protected from degradation and can potentiate the biologic actions of IGF-I. These findings provide a molecular explanation for the association of the IGF's with the extracellular matrix, and suggest that the binding of the IGF's to matrix, via IGFBP-5, may be important in mediating the cellular growth response to these growth factors.  相似文献   

12.
顾锦法  颜贻谦 《生理学报》1989,41(2):191-195
用培养过鸡胚(来亨鸡)或胎鼠(ICR小鼠)肌组织的成纤维细胞的条件培养液,定量地研究它们对胎鼠或鸡胚的成肌细胞的增殖和融合的影响。所得结果如下:(1) 胎鼠的成纤维细胞条件培养液促进胎鼠或鸡胚成肌细胞增殖,分别为对照组的2.65倍,(P<0.001)或2.35倍,(P<0.01);(2) 鸡胚的成纤维细胞条件培养液促进鸡胚或胎鼠的成肌细胞增殖,分别为对照组的2.66倍,(P<0.01)或2.17倍,(P<0.01);(3) 胎鼠的成纤维细胞条件培养液增加胎鼠或鸡胚的成肌细胞的融合率,分别为对照组的1.9倍或2.6倍;鸡胚的成纤维细胞条件培养液只增加鸡胚成肌细胞的融合率,为对照组的2.1倍,但对胎鼠成肌细胞的融合无明显的影响。 实验结果提示:成纤维细胞条件培养液促进成肌细胞的增殖,两种动物间无明显的差异,但在融合上却有一定的种属特异性。  相似文献   

13.
Transforming growth factor beta (TGF-beta) and connective tissue growth factor (CTGF) have been described to induce the production of extracellular matrix (ECM) proteins and have been reported to be increased in different fibrotic disorders. Skeletal muscle fibrosis is a common feature of Duchenne muscular dystrophy (DMD). The mdx mouse diaphragm is a good model for DMD since it reproduces the muscle degenerative and fibrotic changes. Fibronectin (FN) and proteoglycans (PG) are some of the ECM proteins upregulated in dystrophic conditions. In view of understanding the fibrotic process involved in DMD we have isolated fibroblasts from dystrophic mdx diaphragms. Here we report that regardless of the absence of degenerative myofibers, adult mdx diaphragm fibroblasts show increased levels of FN and condroitin/dermatan sulfate PGs synthesis. Fibroblasts isolated from non fibrotic tissue, such as 1 week old mice diaphragms or skin, do not present elevated FN levels. Furthermore, mdx fibroblast conditioned media is able to stimulate FN synthesis in control fibroblasts. Autocrine TGF-beta signaling was unaltered in mdx cells. When control fibroblasts are exposed to TGF-beta and CTGF, FN increases as expected. Paradoxically, in mdx cells it decreases in a concentration dependent manner and this decrease is not due to a downregulation of FN synthesis. According to this data we hypothesize that a pathological environment is able to reprogram fibroblasts into an activated phenotype which can be maintained through generations.  相似文献   

14.
Heparin inhibits skeletal muscle growth in vitro   总被引:3,自引:0,他引:3  
Heparin or heparan sulfate proteoglycan (HeSPG), but not chondroitin sulfate or hyaluronic acid, exerts a pronounced inhibitory effect on muscle growth in vitro, as determined by total protein, myosin accumulation or synthesis, and [3H]thymidine incorporation studies. Primary muscle fibroblast culture growth is also inhibited by heparin but to a substantially lesser degree compared to muscle (30% and over 90% inhibition of growth, respectively). Heparin-induced inhibition of skeletal muscle growth is a consequence of its interaction with a growth factor(s) present in the media used to support myogenesis; heparin-Sepharose column absorbed horse serum can support muscle growth only in the presence of added heparin-binding growth factors like fibroblast growth factor (FGF) or chicken muscle growth factor (CMGF). Furthermore, heparin prevents the binding of iodinated FGF to the myoblast surface. We also show that the extent of muscle growth is a function of the relative amounts of heparin and FGF in culture. Finally, we provide evidence indicating that FGF can combine with endogenously occurring heparin-like components: immobilized FGF binds sodium-[35S]sulfate labeled components secreted in muscle culture conditioned medium, an interaction inhibited by anti-HeSPG antibodies or heparin, but not by other sulfated glycosaminoglycans. Since heparin binding growth factors not only stimulate myoblast proliferation but also actively inhibit the onset of muscle differentiation (G. Spitzz, D. Roman, and A. Strauss (1986). J. Biol. Chem. 261, 9483-9488), their interaction with naturally occurring heparin-like components may be an important physiological mechanism for modulating muscle growth and differentiation in development and regeneration.  相似文献   

15.
A novel cell growth inhibitor, IDF45 (inhibitory diffusible factor), was recently purified to apparent homogeneity. It is a bifunctional molecule: able to bind Insulin like growth factor (IGF) and to 100% inhibit DNA synthesis stimulated by serum in fibroblasts. It was of interest to verify whether other members of the IGF-binding protein (IGFBP) family show the same bifunctional growth inhibitory properties. In this paper we show that purified IGFBP-1 derived from amniotic fluid is a cell growth inhibitor. In chick embryo fibroblasts, it inhibited DNA synthesis stimulated by serum. However the stimulation was maximally 60% inhibited and half of the inhibition was observed with 100ng/ml IGFBP-1. So the specific activity of IGFBP-1 is lower than that of IDF45. IGFBP-1 also reversibly prevented the CEF growth. In the same cells IGFBP-1 inhibited DNA synthesis stimulated by IGF-I. We demonstrated that the same protein IGFBP-1 is able to inhibit DNA synthesis stimulated by serum and by IGF-I. The possibility that IGFBP-1 is a bifunctional molecule is discussed.  相似文献   

16.
Skeletal myoblasts withdrawing from cell cycle is a prerequisite for myodifferentiation, while upon proliferation/differentiation transformation, a large portion of myoblasts will undergo apoptosis. Skeletal fibroblasts, residing in muscle tissue both during and post myogenesis, have been proofed to play pivotal roles in muscle development, while their effect on myoblast apoptosis being coincident with differentiation has not been reported. Using a membrane insert co‐culture system, we studied it and found that the mitochondrial pathway played a crucial role in myoblast apoptosis during differentiation, and fibroblasts promoted not only cell cycle withdrawal but also myoblast survival in a paracrine fashion, which was coupled with upregulations of β1 integrin, phosphorylated Akt and anti‐apoptotic protein Bcl2. To determine the effect of β1 integrin in the process, we transfected myoblasts with siRNA specific for β1 integrin before co‐culture and found that β1 integrin knockdown abolished anti‐apoptotic ability of myoblasts and inhibited Akt activation and Bcl2 expression. Blockage of PI3K/Akt pathway with wortmannin also seriously impaired the protective effect of fibroblasts on myoblasts and fibroblast‐induced Bcl2 expression. The data demonstrated that fibroblasts protected myoblasts from intrinsic apoptosis associated with differentiation, and β1 integrin‐PI3K/Akt pathway activation was required for the process.  相似文献   

17.
Cell cultures of human skin fibroblasts, myoblasts, and fused muscle cells were grown in the presence of [14C]leucine or a mixture of [14C]amino acids. The proteins synthesised and secreted or leaked into the culture medium during radio-labelling were separated by one and two-dimensional PAGE and detected by fluorography. Four major bands of Mr 54 kD, 52 kD, 51 kD, and 49 kD were present at greatly increased concentration in fibroblast media. These fibroblast-specific polypeptides can be readily detected in myoblast/fibroblast cocultures with fibroblast content as low as 5%.  相似文献   

18.
19.
Cyclic short-duration stretches (CSDS) such as those resulting from repetitive motion strain increase the risk of musculoskeletal injury. Myofascial release is a common technique used by clinicians that applies an acyclic long-duration stretch (ALDS) to muscle fascia to repair injury. When subjected to mechanical strain, fibroblasts within muscle fascia secrete IL-6, which has been shown to induce myoblast differentiation, essential for muscle repair. We hypothesize that fibroblasts subjected to ALDS following CSDS induce myoblast differentiation through IL-6. Fibroblast conditioned media and fibroblast-myoblast cocultures were used to test fibroblasts' ability to induce myoblast differentiation. The coculture system applies strain to fibroblasts only but still allows for diffusion of potential differentiation mediators to unstrained myoblasts on coverslips. To determine the role of IL-6, we utilized myoblast unicultures ± IL-6 (0-100 ng/ml) and cocultures ± α-IL-6 (0-200 μg/ml). Untreated uniculture myoblasts served as a negative control. After 96 h, coverslips (n = 6-21) were microscopically analyzed and quantified by blinded observer for differentiation endpoints: myotubes per square millimeter (>3 nuclei/cell), nuclei/myotube, and fusion efficiency (%nuclei within myotubes). The presence of fibroblasts and fibroblast conditioned media significantly enhanced myotube number (P < 0.05). However, in coculture, CSDS applied to fibroblasts did not reproduce this effect. ALDS following CSDS increased myotube number by 78% and fusion efficiency by 96% vs. CSDS alone (P < 0.05). Fibroblasts in coculture increase IL-6 secretion; however, IL-6 secretion did not correlate with enhanced differentiation among strain groups. Exogenous IL-6 in myoblast uniculture failed to induce differentiation. However, α-IL-6 attenuated differentiation in all coculture groups (P < 0.05). Fibroblasts secrete soluble mediators that have profound effects on several measures of myoblast differentiation. Specific biophysical strain patterns modify these outcomes, and suggest that myofascial release after repetitive strain increases myoblast differentiation and thus may improve muscle repair in vivo. Neutralization of IL-6 in coculture significantly reduced differentiation, suggesting fibroblast-IL-6 is necessary but not sufficient in this process.  相似文献   

20.
R Montesano  K Matsumoto  T Nakamura  L Orci 《Cell》1991,67(5):901-908
We have previously shown that Madin-Darby canine kidney (MDCK) epithelial cells grown in collagen gels in the presence of fibroblasts or fibroblast-conditioned medium (CM) form branching tubules, instead of the spherical cysts that develop under control conditions. We now report that the fibroblast-derived molecule responsible for epithelial tubulogenesis is hepatocyte growth factor (HGF). First, addition of exogenous HGF to cultures of MDCK cells induces formation of epithelial tubules. Second, the tubulogenic activity of fibroblast CM is completely abrogated by antibodies to HGF. These results demonstrate that HGF, a polypeptide that was identified as a mitogen for cultured hepatocytes, has the properties of a paracrine mediator of epithelial morphogenesis, and suggest that it may play important roles in the formation of parenchymal organs during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号