首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
To investigate the character and role of misfolded intermediates in protein folding, a recombinant cytochrome c without the normally blocking histidine to heme misligation was studied. Folding remains heterogeneous as in the wild-type protein. Half of the population folds relatively rapidly to the native state in a two-state manner. The other half collapses (fluorescence quenching) and forms a full complement of helix (CD) with the same rate and denaturant dependence as the fast folding fraction but then is blocked and reaches the native structure (695nm absorbance) much more slowly. The factors that transiently block folding are not intrinsic to the folding process but depend on ambient conditions, including protein aggregation (f(concentration)), N terminus to heme misligation (f(pH)), and proline mis-isomerization (f(U state equilibration time)). The misfolded intermediate populated by the slowly folding fraction was characterized by hydrogen exchange pulse labeling. It is very advanced with all of the native-like elements fairly stably formed but not the final Met80-S to heme iron ligation, similar to a previously studied molten globule form induced by low pH. To complete final native state acquisition, some small back unfolding is required (error repair) but the misfolded intermediate does not revisit the U state before proceeding to N. These properties show that the intermediate is a normal on-pathway form that contains, in addition, adventitious misfolding errors that transiently block its forward progress. Related observations for other proteins (partially misfolded intermediates, pathway heterogeneity) might be similarly explained in terms of the optional insertion of error-dependent barriers into a classical folding pathway.  相似文献   

2.
3.
C Beck  X Siemens    D L Weaver 《Biophysical journal》2001,81(6):3105-3115
Proteins with complex folding kinetics will be susceptible to misfolding at some stage in the folding process. We simulate this problem by using the diffusion-collision model to study non-native kinetic intermediate misfolding in a four-helix bundle protein. We find a limit on the size of the pairwise hydrophobic area loss in non-native intermediates, such that burying above this limit creates long-lasting non-native kinetic intermediates that would disrupt folding and prevent formation of the native state. Our study of misfolding suggests a method for limiting the production of misfolded kinetic intermediates for helical proteins and could, perhaps, lead to more efficient production of proteins in bulk.  相似文献   

4.
Structured RNAs traverse complex energy landscapes that include valleys representing misfolded intermediates. In Neurospora crassa and Saccharomyces cerevisiae, efficient splicing of mitochondrial group I and II introns requires the DEAD box proteins CYT-19 and Mss116p, respectively, which promote folding transitions and function as general RNA chaperones. To test the generality of RNA misfolding and the activities of DEAD box proteins in vitro, here we measure native folding of a small group I intron ribozyme from the bacterium Azoarcus by monitoring its catalytic activity. To develop this assay, we first measure cleavage of an oligonucleotide substrate by the prefolded ribozyme. Substrate cleavage is rate-limited by binding and is readily reversible, with an internal equilibrium near unity, such that the amount of product observed is less than the amount of native ribozyme. We use this assay to show that approximately half of the ribozyme folds readily to the native state, whereas the other half forms an intermediate that transitions slowly to the native state. This folding transition is accelerated by urea and increased temperature and slowed by increased Mg(2+) concentration, suggesting that the intermediate is misfolded and must undergo transient unfolding during refolding to the native state. CYT-19 and Mss116p accelerate refolding in an ATP-dependent manner, presumably by disrupting structure in the intermediate. These results highlight the tendency of RNAs to misfold, underscore the roles of CYT-19 and Mss116p as general RNA chaperones, and identify a refolding transition for further dissection of the roles of DEAD box proteins in RNA folding.  相似文献   

5.
Mogensen JE  Ipsen H  Holm J  Otzen DE 《Biochemistry》2004,43(12):3357-3367
We present an analysis of the folding behavior of the 159-residue major birch pollen allergen Bet v 1. The protein contains a water-filled channel running through it. Consequently, the protein has a hydrophobic shell, rather than a hydrophobic core. During the folding of the protein from either the urea-, pH-, or SDS-denatured state, Bet v 1 transiently populates a partially folded intermediate state. This state appears to be misfolded, since it has to unfold at least partially to fold to the native state. The misfolded intermediate is not, however, a result of the water-filled channel in Bet v 1. The intermediate completely disappears in the mutant Tyr --> Trp120, in which the channel is still present. Tyr120 appears to behave as a "negative gatekeeper" which attenuates efficient folding. The close structural homologue, the apple allergen Mal d 1, also folds without any detectable folding intermediates. However, the position of the transition state on the reaction coordinate, which is a measure of its overall compactness relative to the denatured and native states, is reduced dramatically from ca. 0.9 in Bet v 1 to around 0.5 in Mal d 1. We suggest that this large shift in the transition state structure is partly due to different local helix propensities. Given that individual mutations can have such large effects on folding, one should not a priori expect structurally homologous proteins to fold by the same mechanism.  相似文献   

6.
Folding of the 123 amino acid residue Greek key protein apo-pseudo azurin from Thiosphaera pantotropha has been examined using stopped-flow circular dichroism in 0.5 M Na2SO4 at pH 7.0 and 15 degrees C. The data show that the protein folds from the unfolded state with all eight proline residues in their native isomers (seven trans and one cis) to an intermediate within the dead-time of the stopped-flow mixing (50 ms). The urea dependence of the rates of folding and unfolding of the protein were also determined. The ratio of the folding rate to the unfolding rate (extrapolated into water) is several orders of magnitude too small to account for the equilibrium stability of the protein, consistent with the population of an intermediate. Despite this, the logarithm of the rate of folding versus denaturant concentration is linear. These data can be rationalised by the population of an intermediate under all refolding conditions. Accordingly, kinetic and equilibrium measurements were combined to fit the chevron plot to an on-pathway model (U <==> I <==> N). The fit shows that apo-pseudoazurin rapidly forms a compact species that is stabilised by 25 kJ/mol before folding to the native state at a rate of 2 s-1. Although the data can also be fitted to an off-pathway model (I <==> U <==> N), the resulting kinetic parameters indicate that the protein would have to fold to the native state at a rate of 86,000 s-1 (a time constant of only 12 microseconds). Similarly, models in which this intermediate is bypassed also lead to unreasonably fast refolding rates. Thus, the intermediate populated during the refolding of apo-pseudoazurin appears to be obligate and on the folding pathway. We suggest, based on this study and others, that some intermediates play a critical role in limiting the search to the native state.  相似文献   

7.
Newt fibroblast growth factor (nFGF-1) is an approximately 15-kDa all beta-sheet protein devoid of disulfide bonds. Urea-induced equilibrium unfolding of nFGF-1, monitored by steady state fluorescence and far-UV circular dichroism spectroscopy, is cooperative with no detectable intermediate(s). Urea-induced unfolding of nFGF-1 is reversible, but the percentage of the protein recovered in the native state depends on the time of incubation of the protein in the denaturant. The yield of the protein in the native state decreases with the increase in time of incubation in the denaturant. The failure of the protein to refold to its native state is not due to trivial chemical reactions that could possibly occur upon prolonged incubation in the denaturant. (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra, limited proteolytic digestion, and fluorescence data suggest that the misfolded state(s) of nFGF-1 has structural features resembling that of the denatured state(s). GroEL, in the presence of ATP, is observed to rescue the protein from being trapped in the misfolded state(s). (1)H-(15)N HSQC data of nFGF-1, acquired in the denatured state(s) (in 8 m urea), suggest that the protein undergoes subtle time-dependent structural changes in the denaturant. To our knowledge, this report for the first time demonstrates that the commitment to adapt unproductive pathways leading to protein misfolding/aggregation occurs in the denatured state ensemble.  相似文献   

8.
We report the results of longest to date simulation on misfolding of monomeric human prion protein (HuPrP). By comparing our simulation of a partially unfolded protein to the simulation of the native protein, we observe that the native protein as well as native regions in the partially unfolded protein remain in the native state, and the unfolded regions fold back with increased extended (sheet and PP-II) conformations. The misfolded regions show increased basin hopping from non-helical basins while the amino acids locked in the helical conformation tend to stay locked in that conformation. Our results also validate the hypothesis that denaturation of helices and formation of a partially unfolded intermediate is required for misfolding as the native protein stayed in native conformation for the entire simulation. Finally, we also observe that there is no correlation between misfolding and the chemical identity of amino acids, as both hydrophobic and hydrophilic amino acids showed equal probability of sampling extensively from non-native conformations.  相似文献   

9.
Conformational diseases result from the failure of a specific protein to fold into its correct functional state. The misfolded proteins can lead to the toxic aggregation of proteins. Protein misfolding in conformational diseases often displays a threshold behavior characterized by a sudden shift between nontoxic to toxic levels of misfolded proteins. In some conformational diseases, evidence suggests that misfolded proteins interact with bystander proteins (unfolded and native folded proteins), eliciting a misfolded phenotype. These bystander isomers would follow their normal physiological pathways in absence of misfolded proteins. In this article, we present a general mechanism of bystander and misfolded protein interaction which we have used to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. Using a continuous flow reactor model of the endoplasmic reticulum, we found that slight changes in the bystander protein residence time in the endoplasmic reticulum or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding. Our analysis reveals three mechanisms to rescue bystander proteins in conformational diseases. The results of our model can now help direct experiments to understand the threshold behavior and develop therapeutic strategies targeting the modulation of conformational diseases.  相似文献   

10.
The problems of protein aggregation and protein misfolding in the cell are connected with the appearance of many genetic diseases. Both processes can be a consequence of substitutions of certain amino acid residues in proteins. The substitutions can influence the protein stability and protein folding rates in both the intermediate and the native states. We have studied equilibrium urea unfolding of mutant forms of apomyoglobin with substitutions of conserved nonfunctional residues by Ala to estimate their influence on protein stability. These residues include Val10, Trp14, Ilel11, Leu115, Met131 and Leu135. Conformational transitions were monitored by intrinsic Trp fluorescence and by circular dichroism spectra in the far UV region. Free energy changes upon the transition from the native to intermediate state and from the intermediate to unfolded state were determined. It was shown that all substitutions used lead to an appreciable decrease of the apomyoglobin native state stability, whereas the stability of the intermediate state is affected substantially smaller.  相似文献   

11.
Protein aggregation or misfolding in the cell is connected with many genetic diseases and can result from substitutions in proteins. Substitutions can influence the protein stability and folding rates in both intermediate and native states. The equilibrium urea-induced unfolding was studied for mutant apomyoglobins carrying substitutions of the conserved nonfunctional residues Val10, Trp14, Ile111, Leu115, Met131, and Leu135 with Ala. Conformational transitions were monitored by intrinsic Trp fluorescence and far-UV circular dichroism. Free energy changes upon transition from the native to the intermediate state and from the intermediate to the unfolded state were determined. All substitutions considerably decreased the stability of native apomyoglobin, whereas the effect on the stability of the intermediate state was essentially smaller.  相似文献   

12.
When proteins fold in vivo, the intermediates that exist transiently on their folding pathways are exposed to the potential interactions with a plethora of metabolites within the cell. However, these potential interactions are commonly ignored. Here, we report a case in which a ubiquitous metabolite interacts selectively with a nonnative conformation of a protein and facilitates protein folding and unfolding process. From our previous proteomics study, we have discovered that Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is not known to bind ATP under native conditions, is apparently destabilized in the presence of a physiological concentration of ATP. To decipher the origin of this surprising effect, we investigated the thermodynamics and kinetics of folding and unfolding of GAPDH in the presence of ATP. Equilibrium unfolding of the protein in urea showed that a partially unfolded equilibrium intermediate accumulates in the presence of ATP. This intermediate has a quaternary structure distinct from the native protein. Also, ATP significantly accelerates the unfolding of GAPDH by selectively stabilizing a transition state that is distinct from the native state of the protein. Moreover, ATP also significantly accelerates the folding of GAPDH. These results demonstrate that ATP interacts specifically with a partially unfolded form of GAPDH and affects the kinetics of folding and unfolding of this protein. This unusual effect of ATP on the folding of GAPDH implies that endogenous metabolites may facilitate protein folding in vivo by interacting with partially unfolded intermediates.  相似文献   

13.
《Biophysical journal》2020,118(2):352-365
Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition. The protein unfolds completely at 10 M urea but retains residual secondary structural propensities with restricted motion. Here, we describe the native state, observable intermediate state, and unfolded state for ETR-3 RRM-3, which has canonical RRM fold. These observations can shed more light on unfolding events for RRM-containing proteins.  相似文献   

14.
Chen YR  Clark AC 《Biochemistry》2003,42(20):6310-6320
We have characterized the equilibrium and kinetic folding of a unique protein domain, caspase recruitment domain (CARD), of the RIP-like interacting CLARP kinase (RICK) (RICK-CARD), which adopts a alpha-helical Greek key fold. At equilibrium, the folding of RICK-CARD is well described by a two-state mechanism representing the native and unfolded ensembles. The protein is marginally stable, with a DeltaG(H)()2(O) of 3.0 +/- 0.15 kcal/mol and an m-value of 1.27 +/- 0.06 kcal mol(-1) M(-1) (30 mM Tris-HCl, pH 8, 1 mM DTT, 25 degrees C). While the m-value is constant, the protein stability decreases in the presence of moderate salt concentrations (below 200 mM) and then increases at higher salt concentrations. The results suggest that electrostatic interactions are stabilizing in the native protein, and the favorable Coulombic interactions are reduced at low ionic strength. Above 200 mM salt, the results are consistent with Hofmeister effects. The unfolding pathway of RICK-CARD is complex and contains at least three non-native conformations. The refolding pathway of RICK-CARD also is complex, and the data suggest that the unfolded protein folds via two intermediate conformations prior to reaching the native state. Overall, the data suggest the presence of kinetically trapped, or misfolded, species that are on-pathway both in refolding and in unfolding.  相似文献   

15.
Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity   总被引:1,自引:0,他引:1  
Using a combined master equation and kinetic cluster approach, we investigate RNA pseudoknot folding and unfolding kinetics. The energetic parameters are computed from a recently developed Vfold model for RNA secondary structure and pseudoknot folding thermodynamics. The folding kinetics theory is based on the complete conformational ensemble, including all the native-like and non-native states. The predicted folding and unfolding pathways, activation barriers, Arrhenius plots, and rate-limiting steps lead to several findings. First, for the PK5 pseudoknot, a misfolded 5' hairpin emerges as a stable kinetic trap in the folding process, and the detrapping from this misfolded state is the rate-limiting step for the overall folding process. The calculated rate constant and activation barrier agree well with the experimental data. Second, as an application of the model, we investigate the kinetic folding pathways for human telomerase RNA (hTR) pseudoknot. The predicted folding and unfolding pathways not only support the proposed role of conformational switch between hairpin and pseudoknot in hTR activity, but also reveal molecular mechanism for the conformational switch. Furthermore, for an experimentally studied hTR mutation, whose hairpin intermediate is destabilized, the model predicts a long-lived transient hairpin structure, and the switch between the transient hairpin intermediate and the native pseudoknot may be responsible for the observed hTR activity. Such finding would help resolve the apparent contradiction between the observed hTR activity and the absence of a stable hairpin.  相似文献   

16.
The DNA-binding domain (DBD) of wild-type p53 loses DNA binding activity spontaneously at 37 degrees C in vitro, despite being thermodynamically stable at this temperature. We test the hypothesis that this property is due to kinetic misfolding of DBD. Interrupted folding experiments and chevron analysis show that native molecules are formed via four tracks (a-d) under strongly native conditions. Folding half-lives of tracks a-d are 7.8 seconds, 50 seconds, 5.3 minutes and more than five hours, respectively, in 0.3M urea (10 degrees C). Approximately equal fractions of molecules fold through each track in zero denaturant, but above 2.0M urea approximately 90% fold via track c. A kinetic mechanism consisting of two parallel folding channels (fast and slow) is proposed. Each channel populates an on-pathway intermediate that can misfold to form an aggregation-prone, dead-end species. Track a represents direct folding through the fast channel. Track b proceeds through the fast channel but via the off-pathway state. Track c corresponds to folding via the slow channel, primarily through the off-pathway state. Track d proceeds by way of an even slower, uncharacterized route. We postulate that activity loss is caused by partitioning to the slower tracks, and that structural unfolding limits this process. In support of this view, tumorigenic hot-spot mutants G245S, R249S and R282Q accelerate unfolding rates but have no affect on folding kinetics. We suggest that these and other destabilizing mutants facilitate loss of p53 function by causing DBD to cycle unusually rapidly between folded and unfolded states. A significant fraction of DBD molecules become effectively trapped in a non-functional state with each unfolding-folding cycle.  相似文献   

17.
Experimental determination of the key features of the free energy landscapes of proteins, which dictate their adeptness to fold correctly, or propensity to misfold and aggregate and which are modulated upon a change from physiological to aggregation-prone conditions, is a difficult challenge. In this study, sub-millisecond kinetic measurements of the folding and unfolding of the mouse prion protein reveal how the free energy landscape becomes more complex upon a shift from physiological (pH 7) to aggregation-prone (pH 4) conditions. Folding and unfolding utilize the same single pathway at pH 7, but at pH 4, folding occurs on a pathway distinct from the unfolding pathway. Moreover, the kinetics of both folding and unfolding at pH 4 depend not only on the final conditions but also on the conditions under which the processes are initiated. Unfolding can be made to switch to occur on the folding pathway by varying the initial conditions. Folding and unfolding pathways appear to occupy different regions of the free energy landscape, which are separated by large free energy barriers that change with a change in the initial conditions. These barriers direct unfolding of the native protein to proceed via an aggregation-prone intermediate previously identified to initiate the misfolding of the mouse prion protein at low pH, thus identifying a plausible mechanism by which the ruggedness of the free energy landscape of a protein may modulate its aggregation propensity.  相似文献   

18.
The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding.  相似文献   

19.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

20.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号