首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

2.
Placental blood flow, nitric-oxide (NO) levels, and endothelial NO synthase (eNOS) expression increase during human and ovine pregnancy. Shear stress stimulates NO production and eNOS expression in ovine fetoplacental artery endothelial (OFPAE) cells. Because eNOS is the rate-limiting enzyme essential for NO synthesis, its activity and expression are both closely regulated. We investigated signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by OFPAE cells. The OFPAE cells were cultured at 3 dynes/cm2 shear stress, then exposed to 15 dynes/cm2 shear stress. Western blot analysis for phosphorylated ERK1/2, Akt, p38 mitogen activated protein kinase (MAPK), and eNOS showed that shear stress rapidly increased phosphorylation of ERK1/2 and Akt but not of p38 MAPK. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by the phosphatidyl inositol-3-kinase (PI-3K)-inhibitors wortmannin and LY294002 but not by the mitogen activated protein kinase kinase (MEK)-inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels otherwise induced by the 15 dynes/cm2 shear stress. Blockade of either signaling pathway changed the shear stress-induced increase in eNOS protein levels. In conclusion, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibition of MEK. Prolonged shear stress-stimulated increases in eNOS protein were not affected by inhibition of MEK- or PI-3K-mediated pathways.  相似文献   

3.
Thrombospondin (TSP), a 450-kDa trimeric glycoprotein secreted by platelets and endothelial cells at sites of tissue injury or inflammation, may play an important role in polymorphonuclear leukocyte (PMN) adherence to blood vessel walls before diapedesis. We have examined the adherence of PMN to TSP and compared it to adherence to other extracellular matrix proteins. PMN adherence to TSP-coated plastic was complete by 60 min with spreading completed by 2 h. The kinetics of adhesion and spreading on TSP were similar to that of vitronectin (VN), laminin (LN), and fibronectin (FN). Activation of PMN with the calcium ionophore A23187 or the chemotactic peptide FMLP increased PMN adherence to LN and FN, but not to TSP or VN, suggesting that PMN activation may differentially regulate expression of TSP and VN receptors as compared to LN and FN receptors. The specificity of PMN adherence to TSP was confirmed by competition with saturating amounts of TSP and inhibition with anti-TSP antibodies. mAb A6.1, which binds to the protease-resistant core of TSP, was the most effective in blocking PMN adherence to TSP. Using TSP proteolytic fragments, we demonstrated that the primary interaction of PMN with TSP was mediated through the 140-kDa COOH-terminal domain. Inasmuch as the 140-kDa fragment of TSP contains an Arg-Gly-Asp sequence similar to the cell recognition site of FN and VN, we determined whether RGDS peptides would inhibit PMN adhesion. RGDS did not significantly inhibit PMN adhesion to TSP, VN, or LN, but reduced PMN adhesion to FN by 50%. To determine if PMN adhesion to TSP was mediated by a beta 2 integrin receptor such as LFA-1, MO-1, or p150,95, we performed adhesion assays using PMN isolated from patients with leukocyte adhesion deficiency that lack beta 2 receptors. Leukocyte adhesion deficiency PMN exhibited normal adherence to TSP. In contrast, adherence to VN, LN, and FN was reduced by 95%. Therefore, adherence to TSP is probably not mediated by a beta 2 integrin receptor. These data contribute to the accumulating evidence that PMN can interact with extracellular matrix proteins through a CD11/CD18-independent process.  相似文献   

4.
Skeletal homeostasis is partly regulated by the mechanical environment and specific signals generated by a cell's adhesion to the matrix. Previous studies demonstrated that osteopontin (OPN) expression is stimulated in response to both cellular adhesion and mechanical stimulation. The present studies examine if specific integrin ligands mediate osteoblast selective adhesion and whether opn mRNA expression is induced in response to these same ligands. Embryonic chicken calvaria osteoblastic cells were plated on bacteriological dishes coated with fibronectin (FN), collagen type I (Col1), denatured collagen/gelatin (G), OPN, vitronectin (VN), laminin (LN) or albumin (BSA). Osteoblastic cells were shown to selectively adhere to FN, Col1, G and LN, yet not to VN, OPN or BSA. Opn mRNA expression was induced by adhesion to Col1, FN, LN and G, but neither OPN nor VN induced this expression. Examination of the activation of the protein kinases A and C second signaling systems showed that only adhesion to FN induced protein kinase A and protein kinase C (PKC) activity while adherence to Col1 induced PKC. Evaluation of the intracellular distribution of focal adhesion kinase (FAK) and p-tyrosine within cells after adherence to FN, VN or BSA demonstrated that adherence to FN stimulated FAK translocation from the nucleus to the cytoplasm and high levels of p-tyrosine localization at the cell surface. However, cell adherence to VN or BSA did not show these morphological changes. These data illustrate that osteoblast selective adhesion is mediated by specific integrin ligands, and induction of intracellular second signal kinase activity is related to the nature of the ligand.  相似文献   

5.
The gastroduodenal pathogen Helicobacter pylori has been shown to inhibit the interaction between the extracellular matrix protein laminin and its receptor on gastric epithelial cells, potentially contributing to a loss of mucosal integrity. As a 25-kDa outer membrane protein of H. pylori in association with the bacterial lipopolysaccharides (LPS) mediates attachment to laminin, the aim of this study was to determine whether the 25-kDa protein is produced by H. pylori in infected hosts. We examined the immune response to the 25-kDa laminin binding protein in 12 paediatric patients; samples from a H. pylori-negative healthy adult were used as controls. In immunoblotting, antibodies to a 25-kDa protein were found in the serum and saliva of H. pylori-positive individuals only, and using the positive sera and saliva, laminin binding to the 25-kDa protein was inhibited. Thus, the 25-kDa laminin-binding protein is produced by H. pylori in infected hosts.  相似文献   

6.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

7.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

8.
Adherence to endothelium and then to the extracellular matrix is a prerequisite for extravasation of monocytes into injured tissues. There, monocytes differentiate into macrophages and express heparin binding epidermal growth factor-like growth factor (HB-EGF), a key growth factor involved in normal wound healing. We investigated whether the interaction of human monocytic THP-1 cells with the endothelial cell adhesion molecules (vascular CAM-1, VCAM-1; intercellular adhesion molecule-1 ICAM-1 and endothelial-selectin, E-selectin), or the extracellular matrix (ECM) proteins (fibronectin, FN; laminin, LN and fibrinogen, FG) regulate HB-EGF expression. We have shown that adherence of THP-1 cells via VCAM-1, E-selectin or FN, which are all overexpressed at sites of inflammation, potentiates HB-EGF mRNA expression. In contrast, adhesion of THP-1 cells via ICAM-1 or FG, has no significant effect. Since THP-1 cells interact with ICAM-1 and FG through beta2 integrins, and with VCAM-1 and FN via beta1 integrins, regulation of HB-EGF expression appears to be specific to beta1 integrin ligation. In addition, we demonstrate that THP-1 binding to LN, through the beta1 integrin VLA-6, down regulates HB-EGF expression. Thus physiologically, transient destruction of LN and expression of VCAM-1, E-selectin and fibronectin at sites of inflammation, may locally induce HB-EGF overexpression.  相似文献   

9.
The 67-kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that mediates high-affinity interactions between cells and laminin. Overexpression of this protein in tumor cells has been related to tumor invasion and metastasis. Thus far, only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated. The finding that the cDNA for the 37LRP is virtually identical to a cDNA encoding the ribosomal protein p40 has suggested that 37LRP is actually a component of the translational machinery, with no laminin-binding activity. On the other hand, a peptide of 20 amino acids deduced from the sequence of 37LR/p40 was shown to exhibit high laminin-binding activity. The evolutionary relationship between 23 sequences of 37LRP/p40 proteins was analyzed. This phylogenetic analysis indicated that all of the protein sequences derive from orthologous genes and that the 37LRP is indeed a ribosomal protein that acquired the novel function of laminin receptor during evolution. The evolutionary analysis of the sequence identified as the laminin-binding site in the human protein suggested that the acquisition of the laminin-binding capability is linked to the palindromic sequence LMWWML, which appeared during evolution concomitantly with laminin.   相似文献   

10.
GnRH-II enhances ovarian cancer cell invasion in an autocrine manner. We have now found that GnRH-II increases 37-kDa laminin receptor precursor (LRP) production in GnRH receptor (GnRHR)-positive OVCAR-3 and CaOV-3 ovarian cancer cells, while small interfering RNA (siRNA)-mediated depletion of GnRH-II or GnRHR mRNA abrogates this. The invasiveness of ovarian cancer cells is also reduced >85% by siRNA-mediated knockdown of LRP levels and >50% by pretreatment of Matrigel with a synthetic peptide that blocks interactions between laminin and the 67-kDa nonintegrin laminin receptor which comprises two LRP subunits. Conversely, overexpressing LRP in CaOV-3 cells increases their invasiveness 5-fold, while overexpressing LRP with a nonfunctional laminin-binding site does not. Depletion of LRP by siRNA treatment reduces CaOV-3 cell attachment to laminin-coated plates by ~80% but only reduces their binding to Matrigel by ~20%. Thus, while LRP influences CaOV-3 cell adhesion to laminin, LRP must act in other ways to enhance invasion. Matrix metalloproteinases (MMPs) are key mediators of invasion, and LRP siRNA treatment of OVCAR-3 and CaOV-3 cells inhibits MMP-2 but not MMP-9 mRNA levels. Overexpressing LRP in these cells increases MMP-2 production specifically, while a laminin-binding deficient LRP does not. Importantly, LRP siRNA treatment abolishes GnRH-II-induced MMP-2 production, and invasion in OVCAR-3 and CaOV-3 cells, which was also seen after MMP-2 siRNA treatment. These results suggest that GnRH-II-induced LRP expression increases the amount of the 67-kDa nonintegrin laminin receptor, which appears to interact with laminin in the extracellular matrix to promote MMP-2 expression and enhance ovarian cancer cell invasion.  相似文献   

11.
The laminin-binding protein, variously called the 37/67-kDa high affinity laminin receptor or p40, mediates the attachment of normal cells to the laminin network, and also has a role as a ribosomal protein. Over-expression of this protein has been strongly correlated with the metastatic phenotype. However, few studies have investigated the cellular consequence of the ablation of this gene's expression. To address this issue, the expression of the 37/67-kDa high affinity laminin receptor was knocked out with several siRNA constructs via RNA interference in transformed liver (Hep3B) cells. In each case where the message was specifically ablated, apoptosis was induced, as determined by annexin V/propidium iodide staining, and by double staining with annexin V and an antibody directed against the 37/67-kDa high affinity laminin receptor. These results suggest that this protein plays a critical role in maintaining cell viability.  相似文献   

12.
Mouse embryo implantation depends on the complex interaction between the embryo trophoblast cells and the uterine environment, which deposits an extracellular matrix with abundant amounts of laminin. Intrauterine injection and blastocyst or ectoplacental cone culture models were used to study the effect of 32/67 kDa laminin-binding protein antibody on mouse embryo implantation in vivo and in vitro. Intrauterine injection of 32/67 kDa laminin-binding protein antibody (0.4 mg in 1 ml Ham's F-10 medium, 5 microl per mouse) into the left uterine horns of mice (n = 22) on day 3 of pregnancy inhibited embryo implantation significantly (P < 0.001) compared with the contralateral horns that had been injected with normal rabbit IgG. A continuous section study on day 5 after injection showed that the embryos in the control uteri implanted normally and developed healthily, but there were no embryos or the remaining embryos had disintegrated in the uteri injected with 32/67 kDa laminin-binding protein antibody. Blastocysts or ectoplacental cones were cultured in media containing 32/67 kDa laminin-binding protein antibody (0.2 mg ml(-1)) on laminin-coated dishes with normal rabbit IgG at the same concentration as in the controls. The 32/67 kDa laminin-binding protein had no effect on blastocyst or ectoplacental cone attachment, but prohibited the blastocyst or ectoplacental cone outgrowth and primary or secondary trophoblast giant cell migration. These results indicate that 32/67 kDa laminin-binding protein antibody blocked mouse embryo implantation by preventing embryo trophoblast cell invasion and migration through the uterine decidual basement membrane-like extracellular matrix which has a high laminin content.  相似文献   

13.
Neural cortical cells, isolated from prenatal rat cerebra, were grown on surface-modified poly(lactic-co-glycolic acid, 65:35) (PLGA) films coated with poly-D-lysine (PDL) with either laminin (LN), fibronectin (FN) or collagen (CN). Immunocytochemistry showed that the isolated cells were highly immunopositive for both neurofilament and MAP-2 with well-organized neurites and somatodendritic localization. The presence of PDL with LN or FN on the PLGA films was essential for increased neural cell growth. Also, PLGA films coated with either PDL/LN or PDL/FN mixtures had higher neurite outgrowth and regular differentiation.Revisions requested 30 September 2004; Revisions received 10 November 2004  相似文献   

14.
15.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

16.
Migration and proliferation of smooth muscle cells (SMC) are important events during arteriogenesis, but the underlying mechanism is still only partially understood. The present study investigates the expression of integrins alpha 5 beta 1 and v beta 3 as well as focal adhesion kinase (FAK) and phosphorylated FAK (pY397), key mediators for cell migration and proliferation, in collateral vessels (CV) in rabbit hind limbs induced by femoral ligation or an arteriovenous (AV) shunt created between the distal femoral artery stump and the accompanying femoral vein by confocal immunofluorescence. In addition, the effect of the extracellular matrix components fibronectin (FN), laminin (LN), and Matrigel on expression of these focal adhesion molecules proliferation was studied in cultured SMCs. We found that: (1) in normal vessels (NV), both integrins alpha 5 beta 1 and alpha v beta 3 were mainly expressed in endothelial cells, very weak in smooth muscle cells (SMC); (2) in CVs, both alpha 5 beta 1 and alpha v beta 3 were significantly upregulated (P < 0.05); this was more evident in the shunt-side CVs, 1.5 and 1.3 times higher than that in the ligation side, respectively; (3) FAK and FAK(py397) were expressed in NVs and CVs in a similar profile as was alpha 5 beta 1 and alpha v beta 3; (4) in vitro SMCs cultured on fibronectin (overexpressed in collaterals) expressed higher levels of FAK, FAK (pY397), alpha 5 beta 1, and alpha v beta 3 than on laminin, whereas SMCs growing inside Matrigel expressed little of these proteins and showed no proliferation. In conclusion, our data demonstrate for the first time that the integrin-FAK signaling axis is activated in collateral vessels and that altered expression of FN and LN may play a crucial role in mediating the integrin-FAK signaling pathway activation. These findings explain a large part of the positive remodeling that collateral vessels undergo under the influence of high fluid shear stress.  相似文献   

17.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS), the underlying molecular mechanisms remain unclear and controversial. Shear-induced production of NO involves Ca2+/calmodulin-independent mechanisms, including phosphorylation of eNOS at several sites and its interaction with other proteins, including caveolin and heat shock protein-90. There have been conflicting results as to which protein kinases—protein kinase A, protein kinase B (Akt), other Ser/Thr protein kinases, or tyrosine kinases—are responsible for shear-dependent eNOS regulation. The functional significance of each phosphorylation site is still unclear. We have attempted to summarize the current status of understanding in shear-dependent eNOS regulation. shear stress; nitric oxide; endothelial cells; protein kinases  相似文献   

18.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, increases caveolae density, and leads to enhanced mechanosensitivity to subsequent changes in hemodynamic forces within cultured endothelial cells. Flow-preconditioned cells expressed a fivefold increase in caveolin (and other caveolar-residing proteins) at the luminal surface compared with no-flow controls. The density of morphologically identifiable caveolae was enhanced sixfold at the luminal cell surface of flow-conditioned cells. Laminar shear stress applied to static endothelial cultures (flow step of 5 dyn/cm2), enhanced the tyrosine phosphorylation of luminal surface proteins by 1.7-fold, including caveolin-1 by 1.3-fold, increased Ser1179 phosphorylation of endothelial nitric oxide synthase (eNOS) by 2.6-fold, and induced a 1.4-fold activation of mitogen-activated protein kinases (ERK1/2) over no-flow controls. The same shear step applied to endothelial cells preconditioned under 10 dyn/cm2 of laminar shear stress for 6 h and induced a sevenfold increase of total phosphotyrosine signal at the luminal endothelial cell surface enhanced caveolin-1 tyrosine phosphorylation 5.8-fold and eNOS phosphorylation by 3.3-fold over static control values. In addition, phosphorylated caveolin-1 and eNOS proteins were preferentially localized to caveolar microdomains. In contrast, ERK1/2 activation was not detected in conditioned cells after acute shear challenge. These data suggest that cultured endothelial cells respond to a sustained flow environment by directing caveolae to the cell surface where they serve to mediate, at least in part, mechanotransduction responses.  相似文献   

19.
目的:观测流体剪切应力对血管内皮细胞NO合成酶(nitric oxidesynthase,NOS)活性的影响并探讨其发生机制。方法:采用Griess 方法测定不同流体剪切应力作用下血管内皮细胞中NOS活性的变化;并观测多种NOS干预物质对这种变化的影响。结果:剪切应力显著提高血管内皮细胞中NOS活性;地塞米松(dexamethasone)实验表明,剪切应力这种作用主要是通过对结构型NOS活性的增强实现的,且具有明显的剂量和时间依赖性;放线菌酮(cycloheximide)非特异性地抑制细胞中NOS酶蛋白合成,但cycloheximide 处理组中受剪切应力作用细胞NOS活性仍显著高于其对照细胞,仅升高幅度明显降低。A23187 处理后细胞中NOS活性升高约达2 倍,其中剪切应力作用细胞的NOS活性显著高于其对照,但这种变化程度亦较A23187 未处理组明显减小。结论:剪切应力显著提高血管内皮细胞eNOS活性:eNOS酶蛋白合成增加和细胞内Ca2+ 浓度的升高在剪切应力对血管内皮细胞NOS活性的调节机制中具有重要意义  相似文献   

20.
We used affinity chromatography to isolate a specific laminin-binding protein from murine fibrosarcoma cells. These cells bind exogenous laminin to their surface with high affinity (Kd = 2 X 10(-9)M for laminin) with approximately 5 X 10(4) sites per cell. Laminin affinity chromatography of [35S]methionine-labeled cell extracts produced two distinct proteins. One was identified as Type IV (basement membrane) collagen based on its migration pattern on SDS gels and bacterial collagenase sensitivity. The other protein, which migrates as a single band or closely spaced doublet on reduced SDS gels, has a reduced molecular weight of 69,000. Using a nitrocellulose filter disk assay, we found that the latter protein specifically bound 125I-laminin with the same high affinity (Kd = 2 X 10(-9)M for laminin) as did intact fibrosarcoma cells. By iodinating intact cells, we demonstrated that this laminin-binding protein is on the cell surface. We conclude that this protein with reduced molecular weight of 69,000 is a subunit or component of a larger cell surface receptor protein for laminin in this fibrosarcoma model. This laminin receptor may mediate the interaction of the cell with its extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号