首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type-2 diabetes (T2D) is a complex metabolic disease characterized by insulin resistance in the liver and peripheral tissues accompanied by a defect in pancreatic beta-cell. Since their discovery three subtypes of Peroxisomes Proliferators Activated Receptors were identified namely PPARalpha, PPARgamma and PPARbeta/(delta). We were interested in designing novel PPARgamma selective agonists and/or dual PPARalpha/gamma agonists. Based on the typical topology of synthetic PPAR agonists, we focused our design approach on 4,4-dimethyl-1,2,3,4-tetrahydroquinoline as novel cyclic tail.  相似文献   

2.
We have developed a new class of PPARalpha/gamma dual agonists, which show excellent agonistic activity in PPARalpha/gamma transactivation assay. In particular, (R)-9d was identified as a potent PPARalpha/gamma dual agonist with EC(50)s of 0.377 microM in PPARalpha and 0.136 microM in PPARgamma, respectively. Interestingly, the structure-activity relationship revealed that the stereochemistry of the identified PPARalpha/gamma dual agonists significantly affects their agonistic activities in PPARalpha than in PPARgamma.  相似文献   

3.
Aryl-tetrahydropyridine derivatives were prepared and their PPARalpha/gamma dual agonistic activities were evaluated. Among them, compound (S)-5b was identified as a potent PPARalpha/gamma dual agonist with an EC(50) of 1.73 and 0.64 microM in hPPARalpha and gamma, respectively. In diabetic (db/db) mice, compound (S)-5b showed good glucose lowering efficacy and favorable pharmacokinetic properties.  相似文献   

4.
A series of azaindole-alpha-alkyloxyphenylpropionic acid analogues was synthesized and evaluated for PPAR agonist activities. Structure-activity relationship was developed for PPARalpha/gamma dual agonism. One of the synthesized compound 7a was identified as a potent, selective PPARalpha/gamma dual agonist.  相似文献   

5.
A novel series of potent dual agonists of PPARalpha and PPARgamma, the alkoxybenzylglycines, was identified and explored using a solution-phase library approach. The synthesis and structure-activity relationships of this series of dual PPARalpha/gamma agonists are described.  相似文献   

6.
In the quest for novel PPARalpha/gamma co-agonists as putative drugs for the treatment of type 2 diabetes and dyslipidemia, we have used a structure-based design approach to identify propionic acids with a 1,5-disubstituted indole scaffold as potent PPARalpha/gamma activators. Compounds 13, 24, and 28 are examples of submicromolar dual agonists with different alpha/gamma EC50 ratios that are selective against the delta-isoform. Analysis of the X-ray complex structure of PPARgamma with the indole propionic acid 13 provides a rationalization for some of the observed SAR.  相似文献   

7.
8.
We report the design and synthesis of equipotent PPARalpha/gamma dual agonists starting from selective PPAR alpha agonist 1. In vivo data for 7 in the Zucker fa/fa rat are presented.  相似文献   

9.
A novel series of l-tyrosine derivatives have been reported with potential PPARalpha/gamma dual agonistic activity. In vitro cell based PPARalpha/gamma transactivation studies have shown compound 4a and compound 4f to be the most potent PPARgamma and PPARalpha activators, respectively. Molecular docking studies performed on these series of compounds have complemented the experimental results and have led to interesting inferences.  相似文献   

10.
11.
Peroxisome proliferator-activated receptors (PPARs) and other members of the nuclear hormone receptor family are important drug targets for the treatment of metabolic diseases. PPARalpha and PPARgamma play crucial roles in lipid and glucose metabolism, respectively. Therefore, screening methods that help to rapidly identify activators of these receptors should be of considerable value. A homogeneous fluorescence polarization (FP) ligand binding assay capable of rapidly identifying ligands that bind to both PPARalpha and PPARgamma has been developed using purified PPARalpha or PPARgamma ligand binding domains and a fluorescein-labeled analog (FLA) of a potent dual PPARalpha/gamma activator. FLA activator showed good binding affinity toward both PPARalpha (K(i)=0.7microM) and PPARgamma (K(i)=0.4microM). The binding of FLA activator was rapid and reached a plateau within 10 min. The resulting FP signal was stable for at least 18h. The FP binding assay performed robustly in a 384-well format, and the average Z' value was 0.77. There was a good correlation between the binding potency (IC(50) values) and rank order of binding potency for a panel of standard PPAR ligands obtained in FP binding assay and scintillation proximity assay or gel filtration binding assays using (3)H-labeled PPARalpha (r(2)=0.99) and PPARgamma (r(2)=0.99) ligands. There was also a good correlation of IC(50) values obtained by FP binding assay and scintillation proximity assay for the clinically used PPAR activators. Thus, the FP binding assay with a single fluorescein-labeled PPARalpha/gamma dual activator offers a homogeneous nonradioactive, sensitive, robust, and less expensive high-throughput assay for detecting compounds that bind to both PPARgamma and PPARalpha. Using this FP binding assay, we have identified a large number of PPARalpha/gamma dual activators. A similar assay platform may be easily adapted to other members of the nuclear hormone receptor family.  相似文献   

12.
A novel class of azetidinone acid-derived dual PPARalpha/gamma agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARalpha and PPARgamma receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.  相似文献   

13.
Improvement of insulin sensitivity and lipid and glucose metabolism by coactivation of both nuclear peroxisome proliferator-activated receptor (PPAR)gamma and PPARalpha potentially provides beneficial effects over existing PPARgamma and alpha preferential drugs, respectively, in treatment of type 2 diabetes. We examined the effects of the dual PPARalpha/gamma agonist ragaglitazar on hyperglycemia and whole body insulin sensitivity in early and late diabetes stages in Zucker diabetic fatty (ZDF) rats and compared them with treatment with the PPARgamma preferential agonist rosiglitazone. Despite normalization of hyperglycemia and Hb A(1c) and reduction of plasma triglycerides by both compounds in both prevention and early intervention studies, ragaglitazar treatment resulted in overall reduced circulating insulin and improved insulin sensitivity to a greater extent than after treatment with rosiglitazone. In late-intervention therapy, ragaglitazar reduced Hb A(1c) by 2.3% compared with 1.1% by rosiglitazone. Improvement of insulin sensitivity caused by the dual PPARalpha/gamma agonist ragaglitazar seemed to have beneficial impact over that of the PPARgamma-preferential activator rosiglitazone on glycemic control in frankly diabetic ZDF rats.  相似文献   

14.
15.
16.
A series of novel pyridine-2-propanoic acids was synthesized. A structure-activity relationship study of these compounds led to the identification of potent dual PPARalpha/gamma agonists with varied isoform selectivity. Based on the results of efficacy studies in diabetic (db/db) mice, and the desired pharmacokinetic parameters, compound (S)-13 was selected for further profiling.  相似文献   

17.
Peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma agonists lower lipid accumulation in muscle and liver by different mechanisms. We investigated whether benefits could be achieved on insulin sensitivity and lipid metabolism by the dual PPARalpha/gamma agonist ragaglitazar in high fat-fed rats. Ragaglitazar completely eliminated high-fat feeding-induced liver triglyceride accumulation and visceral adiposity, like the PPARalpha agonist Wy-14643 but without causing hepatomegaly. In contrast, the PPARgamma agonist rosiglitazone only slightly lessened liver triglyceride without affecting visceral adiposity. Compared with rosiglitazone or Wy-14643, ragaglitazar showed a much greater effect (79%, P < 0.05) to enhance insulin's suppression of hepatic glucose output. Whereas all three PPAR agonists lowered plasma triglyceride levels and lessened muscle long-chain acyl-CoAs, ragaglitazar and rosiglitazone had greater insulin-sensitizing action in muscle than Wy-14643, associated with a threefold increase in plasma adiponectin levels. There was a significant correlation of lipid content and insulin action in liver and particularly muscle with adiponectin levels (P < 0.01). We conclude that the PPARalpha/gamma agonist ragaglitazar has a therapeutic potential for insulin-resistant states as a PPARgamma ligand, with possible involvement of adiponectin. Additionally, it can counteract fatty liver, hepatic insulin resistance, and visceral adiposity generally associated with PPARalpha activation, but without hepatomegaly.  相似文献   

18.
A series of novel pyridine-3-propanoic acids was synthesized. A structure-activity relationship study of these compounds led to the identification of potent dual PPARalpha/gamma agonists with varied isoform selectivity. Based on the results of efficacy studies in diabetic (db/db) mice, and the desired pharmacokinetic parameters, compounds (S)-14 and (S)-19 were selected for further profiling.  相似文献   

19.
The three subtypes of peroxisome proliferator activated-receptors (PPARalpha, delta and gamma) control the storage and metabolism of fatty acids. Treatment of rats with the PPARalpha ligand ciprofibrate increases serum gastrin concentrations, and several lines of evidence suggest that non-amidated gastrins act as growth factors for the colonic mucosa. The aim of the present study was to investigate the expression of PPARs and the effect of PPAR ligands on gastrin production and cell proliferation in human colorectal carcinoma (CRC) cell lines. mRNAs for all three PPAR subtypes were detected by PCR in all CRC cell lines tested. The concentrations of progastrin, but not of glycine-extended or amidated gastrin, measured by radioimmunoassay in LIM 1899 conditioned media and cell extracts were significantly increased by treatment with the PPARalpha ligand clofibrate. Similar increases in progastrin were seen following treatment with the PPARalpha ligands ciprofibrate and fenofibrate, but not with bezafibrate, gemfibrozil or Wy 14643. The PPARgamma agonist rosiglitazone had no significant effect on progastrin production. The PPARalpha ligand clofibrate also stimulated proliferation of the LIM 1899 cell line. We conclude that some PPARalpha ligands increase progastrin production by the human CRC cell line LIM 1899, and that clofibrate increases proliferation of LIM 1899 cells. These studies have revealed a relationship between PPARs and gastrin, two regulatory molecules implicated in the pathogenesis of CRC.  相似文献   

20.
A series of amphipathic 3-phenylbenzisoxazoles were found to be potent agonists of human PPARalpha, gamma and delta. The optimization of acid proximal structure for in vitro and in vivo potency is described. Results of po dosed efficacy studies in the db/db mouse model of type 2 diabetes showed efficacy equal or superior to Rosiglitazone in correcting hyperglycemia and hypertriglyceridemia. Good functional receptor selectivity for PPARalpha and gamma over PPARdelta can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号