首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mouse prostate reconstitution is a useful model for studying the progression of ras + myc-induced carcinomas. When these oncogenes were introduced into both the epithelial and the mesenchymal compartments, poorly differentiated adenocarcinomas resulted. Restricted introduction of both oncogenes into the epithelium produced epithelial hyperplasia. Malignancies were produced in two out of 17 cases of selectively transformed epithelium, suggesting that the hyperplastic condition represents a premalignant phenotype. Restricted introduction of both oncogenes into the mesenchyme produced only mesenchymal dysplasia. Transforming growth factor-beta 1 (TGF-beta 1) and beta 3 (TGF-beta 3) mRNA levels were elevated in the ras + myc-induced carcinomas when compared to the normal controls or to the epithelial hyperplasias. In contrast, TGF-beta 2 mRNA levels were similar in all control and ras + myc-induced carcinomas. Elevated TGF-beta 1 mRNA levels were also found in mesenchymal dysplasia pointing to a potential paracrine activity by the ras + myc transformed mesenchyme. We conclude that elevated TGF-beta 1 and beta 3 are correlated with progression to malignancy and that mesenchyme derived TGF-beta 1 may play an important role in the promotion of ras + myc-induced carcinomas in this model system.  相似文献   

2.
Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effects of oncogene activation on glycosphingolipid (GSL) synthesis by a mouse fibroblast clonal cell line were studied. A transfectant that expressed the activated ras gene showed a definite change in the composition of acidic GSLs, probably an increase in polysialoganglioside, while one that expressed the myc gene showed only a slight change. Neither transfectant grew in soft agar. However, another transfectant, which expressed both the myc and ras genes, and grew in soft agar, showed a more dramatic increase in the acidic GSL component. Thus, activations of the myc and ras oncogenes have a synergistic effect on GSL synthesis during transformation.  相似文献   

4.
Radioresistance induced by oncogenic transformation   总被引:3,自引:0,他引:3  
Rat embryo cells at various stages of oncogenic transformation are obtained by a combination of X irradiation and transfection with the ras and the myc oncogenes. Transfection with either the ras or the myc oncogenes can lead to increased radioresistance, relative to the parental cells. X-ray-transformed clones of the transfected cells do not show additional alteration in radioresponse. Incorporation of the two oncogenes appears to lead to a higher degree of radioresistance.  相似文献   

5.
The requirements for transformation of rat embryo fibroblasts (REFs) by transfected ras and myc oncogenes were explored. Under conditions of dense monolayer culture, neither oncogene was able to transform REFs on its own. However, the introduction of a ras oncogene together with a selectable neomycin resistance marker into REFs allowed killing of the normal nontransfected cells and the outgrowth of colonies of ras transformants, 10% of which survived crisis and became tumorigenic. These cells expressed greater than 10-fold-higher levels of ras p21 than tumorigenic cells cotransfected with ras and myc oncogenes. The myc oncogene similarly was unable to induce tumorigenic conversion of REFs unless especially refractile colonies of oncogene-bearing cells, produced by use of a cotransfected selectable marker, were picked and subcultured. Tumorigenic conversion of REFs by single transfected oncogenes appears to require special culture conditions and high levels of gene expression.  相似文献   

6.
In the Chinese hamster lung fibroblast cell line DC-3F, the development of resistance to different drugs, through several mechanisms like MDR expression or alteration of the DNA topoisomerase II activity, has been shown to be associated with a decreased tumorigenicity. Multiple studies have shown that the myc oncogene, in cooperation with ras, plays a major role in the oncogenic transformation of fibroblasts. As an approach to a better understanding of the relationship between the different phenotypic traits, we analyzed the expression of myc and ras oncogenes in the drug-sensitive DC-3F cells and in variants resistant to 9-hydroxyellipticine (9-OH-E) (DNA topoisomerase II alteration) or to actinomycin D (AD) (multidrug (MDR) expression). Southern and Northern blot analyses revealed about a 10-fold amplification and a 20-fold overexpression of the c-myc gene in the DC-3F cells as compared to the normal lung fibroblasts. Both amplification and overexpression are markedly decreased in the two resistant variants, ras gene copy number and expression were found to be identical in all cell types. In order to analyze the contribution of the decreased myc expression on the different phenotypic traits, the DC-3F/9-OH-E cells were transfected with the plasmid pSV-c-myc, and six clones expressing high amounts of the transfected myc were isolated and characterized. Morphological and caryological alterations, as well as an increased cloning efficiency in soft agar, indicated that the myc gene product was made in these cells. However, the tumorigenicity of the sensitive parental cells was not restored, thus showing that the decreased myc expression alone does not account for the loss of tumorigenicity in the resistant cells. 9-OH-E resistance was not modified in the transfected cells, while the cross-resistance of these cells to MDR-sensitive drugs, such as vincristine, actinomycin D, and taxol, was reversed roughly in proportion of the expression of the transfected myc.  相似文献   

7.
8.
The E1A oncogene of adenovirus serotypes 2 and 5 induces susceptibility to the cytolytic effects of natural killer lymphocytes and activated macrophages when expressed in infected and transformed mammalian cells (cytolysis-susceptible phenotype). E1A and the oncogenes v-myc, long-terminal-repeat-promoted c-myc, and activated c-ras share the ability to immortalize transfected low-passage rodent cells. The cytolytic phenotypes of well-characterized rodent cell lines immortalized by these three oncogenes were defined. In contrast to target cells expressing the intact E1A gene, myc- and ras-expressing, immortalized primary transfectants were resistant to lysis by both types of killer cell populations. The same patterns of susceptibility (E1A) and resistance (myc and ras) to cytolysis were observed in oncogene-transfected continuous rat (REF52) and mouse (NIH 3T3) cell lines, indicating that differences in the cytolytic phenotypes associated with expression of these oncogenes are not due to cell selection during immortalization. The results suggest that the E1A oncogene may possess a functional domain that is different from those of other oncogenes, such as myc and ras, and that the activity linked to this postulated domain is dissociable from the process of immortalization.  相似文献   

9.
X Lu  S H Park  T C Thompson  D P Lane 《Cell》1992,70(1):153-161
Using a reconstituted mouse prostate organ, the effects on endogenous p53 expression of the ras oncogene or of the ras + myc oncogenes were investigated. In this system the ras gene alone causes mild hyperplasia, but the combination of ras and myc leads to the formation of carcinomas. Surprisingly, while p53 mutations were found in cells derived from the reconstituted organs containing ras alone, no such mutations were found in the ras + myc-transformed cells. Their growth, unlike that of the cells containing ras alone, was not inhibited by transfection with plasmids encoding wild-type human p53. We suggest that expression of both activated ras and myc genes bypasses the need for p53 mutation by neutralizing the tumor suppressor activity of normal p53.  相似文献   

10.
The analysis of 11 various oncogenes expression in different human tumors showed that each tumor is characterised by a specific functioning program of these genes. In 40-50% of tumors the oncogenes ras, fos and myc are expressed. All other oncogenes are either considered to be "silent" or are expressed only in few cases. The increased expression of sis and myb oncogenes is observed in metastases.  相似文献   

11.
Cell lines established after transfer into FR3T3 rat fibroblast cells of 'immortalizing' oncogenes (plt gene (large T protein) of polyoma virus, v-myc gene of MC29 virus, rearranged forms of c-myc) exhibited increased rates of sister chromatid exchange (SCE). This was observed neither in cells which expressed one of the oncogenes responsible for the terminal stages of tumorigenic transformation (polyoma virus pmt (middle T protein), mutated ras genes), nor in cell lines carrying oncogenes of both types. Abnormal chromosome numbers were observed in cell lines expressing plt or myc, but not after transformation by pmt or ras oncogenes.  相似文献   

12.
The formation of complexes between oncoproteins of DNA tumor viruses and the cellular protein p53 is thought to result in inactivation of the growth suppressor function of p53. In cells transformed by nononcogenic human adenovirus type 5 (Ad5), the 55-kDa protein encoded by E1B forms a stable complex with p53 and sequesters it in the cytoplasm. However, the homologous 54-kDa protein of highly oncogenic Ad12 does not detectably associate with p53. Yet in Ad12-transformed cells, p53 is metabolically stable, is present at high levels in the nucleus, and contributes to the oncogenicity of the cells. Such properties have previously been described for mutant forms of p53. Here, we show that stable p53 in Ad12-transformed cells is wild type rather than mutant and that stabilization of p53 is a direct consequence of the expression of the Ad12 E1B protein. We also compared the effects of the E1B proteins on transformation of rodent cells by different combinations of oncogenes. A synergistic interaction was observed for the gene encoding the 54-kDa E1B protein of Ad12 with myc plus ras oncogenes, resembling the effect of mutant p53 on myc plus ras. In contrast, the Ad5 55-kDa E1B protein strongly inhibited transformation by myc plus ras but stimulated transformation by E1A plus ras. The data are explained in terms of different interactions of the two E1B proteins with endogenous p53. The results suggest that in cultured rat cells, endogenous wild-type p53 plays an essential role in cell proliferation, even in the presence of myc plus ras. The dependence on p53 is lost, however, when the adenovirus E1A oncogene is present.  相似文献   

13.
Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene‐induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial‐mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras‐induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.  相似文献   

14.
15.
Carcinogenesis is a multistep process, involving the irreversible conversion of a stem cell to a terminal-differentiation-resistant cell ("initiation"), followed by the clonal expansion of this cell ("promotion") and by the acquisition of other genetic alterations leading to malignancy ("progression"). The initiation and progression steps seem to be facilitated by mutagenesis. Promotion has been associated with agents and conditions that cause mitogenesis. Gap junctional intercellular communication, a fundamental biological process regulating cell growth and differentiation, has been postulated to play a major role in carcinogenesis. The hypothesis is supported by the fact that many cancer cells have some dysfunction in gap junctional intercellular communication, many tumor-promoting chemicals and several oncogenes (i.e., ras, src, mos, neu, but not myc) reduce gap junctional intercellular communication, and several growth factors (i.e., EGF, TGF-beta, bovine pituitary extract) inhibit gap junction function. This integrative concept postulates that chemical promoters, oncogenes coding for growth factors, receptors, or transmembrane signaling elements, and growth factors can isolate an initiated cell from the suppressing influence of surrounding normal cells by down-regulating the transfer of ions and small molecules through gap junctions.  相似文献   

16.
The ras gene family and human carcinogenesis   总被引:51,自引:0,他引:51  
J L Bos 《Mutation research》1988,195(3):255-271
It has been well established that specific alterations in members of the ras gene family, H-ras, K-ras and N-ras, can convert them into active oncogenes. These alterations are either point mutations occurring in either codon 12, 13 or 61 or, alternatively, a 5- to 50-fold amplification of the wild-type gene. Activated ras oncogenes have been found in a significant proportion of all tumors but the incidence varies considerably with the tumor type: it is relatively frequent (20-40%) in colorectal cancer and acute myeloid leukemia, but absent or present only rarely in, for example, breast tumors and stomach cancer. No correlation has been found, yet, between the presence of absence of an activated ras gene and the clinical or biological features of the malignancy. The activation of ras oncogenes is only one step in the multistep process of tumor formation. The presence of mutated ras genes in benign polyps of the colon indicates that activation can be an early event, possibly even the initiating event. However, it can also occur later in the course of carcinogenesis to initiate for instance the transition of a benign polyp of the colon into a malignant carcinoma or to convert a primary melanoma into a metastatic tumor. Apparently, the activation of ras genes is not an obligatory event but when it occurs it can contribute to both early and advanced stages of human carcinogenesis.  相似文献   

17.
We have analysed the expression of cadherin/catenin complex molecules in PC C13 rat thyroid cells transformed in vitro with different oncogenes. No significant downregulation of either E-cadherin, alpha-, beta- and gamma-catenin was detected following the introduction of activated forms of myc, adenovirus E1A, ras, raf, myc + ras, E1A + raf. However, ras- and raf-transformed PC C13 cells showed altered adherens junctions. An altered distribution of cadherin/catenin complexes characterized by radially oriented membrane spikes perpendicular to cell edges was the most prominent feature evidenced by immunofluorescence. No beta1 integrin localization was observed in areas where this altered pattern of E-cadherin expression was detected. However, beta1 integrin subunit expression was detected at areas of cell-cell contact where E-cadherin showed a normal pattern of expression. Furthermore, ras- and raf-transformed PC C13 cells showed the ability to migrate in collagen gels, in contrast to their normal untransformed counterpart. Overexpression of beta1 integrin was found to restore normal E-cadherin localization at cell-cell contacts and to partially inhibit the ability to migrate in collagen gels. Finally, two cell lines obtained by ras transformation in vivo, and derived from a rat primary thyroid carcinoma (TK6) and its lung metastasis (MPTK6), were found to have lost gamma-catenin expression. TK6 lost also E-cadherin expression and membrane localization of alpha-catenin. These results suggest that: i) in vitro thyroid cell transformation is associated to a change in cadherin/catenin complexes distribution rather than to a decrease in expression; ii) in vivo transformation is associated to the loss of expression of some of these molecules likely due to tumor progression; iii) alterations in beta1 integrin subunit expression can result in changes in cadherin/catenin function thus implying that an integrin-cadherin synergy may exist in thyroid cells.  相似文献   

18.
19.
The pathobiological effects of oncogenes on normal differentiation of mouse embryonic stem cells from 4-day embryos were examined by introducing active ras, myc, and SV40 large T genes, all driven by mouse metallothionein I enhancer and promoter. Stem cell clones R5, M3, and T2 for ras, myc, and SV40 T genes, respectively, were particularly chosen for analyses because of their higher levels of transgene expression and their diploid chromosomal constitutions. These stem cells were then introduced into host 4-day embryos and the embryos were allowed to develop in the uterus of foster mothers. The stem cells colonized the tissues as extensively as the parent cells and gave rise to adult chimera with no apparent loss or abnormality of the embryos. The active ras and myc oncogenes introduced were expressed not only in the stem cells, but also in the developing embryos and in a variety of tissues of adult chimeras. However, although T antigen was originally expressed in the stem cells, it was not expressed in either developing embryos or tissues of adult chimeras. Induced by retinoic acid treatment in vitro or by subcutaneous grafting, this suppression of T-gene expression was also confirmed in differentiated progeny cells from several stem cell clones expressing T antigen. Permanent lines of fibroblast-like cells could be established at higher frequency from primary cultures of tissues of chimera, subcutaneous differentiated cells, and in vitro differentiated cells derived from T2 cells, and all these clones reexpressed T antigen. The results suggest that active myc and ras genes can be compatible with normal differentiation of the stem cells, but the expression of T antigen is specifically suppressed with recognition of its coding domain.  相似文献   

20.
To identify functional relationships between oncogenes and growth factors, we compared the effects of transfected myc and ras oncogenes on the responsiveness of Fischer rat 3T3 cells to three growth factors: epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-beta). Control cells did not grow in soft agar under any conditions. ras-Transfected cells grew in soft agar under all conditions tested and were insensitive to the stimulatory effects of exogenous growth factors. These cells secreted elevated levels of both EGF-like factors and TGF-beta, suggesting that the lack of responsiveness of these cells to exogenous growth factors arose from autocrine stimulation. myc-Transfected cells displayed conditional anchorage-independent growth: they formed numerous colonies in soft agar in the presence of EGF but relatively few colonies in the presence of PDGF or TGF-beta. Secretion of EGF-like factors and TGF-beta by these cells was not elevated above that of control cells. These results suggest a model for the mechanism of cooperation between myc and ras oncogenes in which ras-like genes induce growth factor production, while myc-like genes increase the responsiveness of cells to these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号