首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Cervera  G Dreyfuss  S Penman 《Cell》1981,23(1):113-120
When the cytoskeletal framework is prepared from suspension-grown HeLa by extraction with nonionic detergent, all the polyribosomes are associated with the framework while 80% of tRNA and the major portion of monoribosomes as well as 75% of the cell proteins are found in the soluble fraction. The mRNA of polyribosomes is bound to the cytoskeleton and these molecules remain attached even after polyribosomes are disassembled in vivo prior to extraction. Although all actively translating message molecules are attached to the framework, about one quarter of the poly(A)+ mRNA is free of the framework. The binding of message to the skeleton may be obligatory for translation. Upon infection with VSV, all the viral polyribosomes but not all the viral messages of the infected cell are associated with the cytoskeletal framework. Pulse-chase labeling shows that VSV messages initially associate with the framework and then later detach and cease translation. The mRNA for the viral glycoprotein (G), known to translate only on ribosomes bound to endoplasmic reticulum, is also retained by the detergent-extracted structure. It appears that the protein substructure of the endoplasmic reticulum which binds polyribosomes is a component of the cytoskeletal framework.  相似文献   

2.
Microtubule-associated protein 2 (MAP2) is a neuronal phosphoprotein that promotes net microtubule growth and actin cross-linking and bundling in vitro. Little is known about MAP2 regulation or its interaction with the cytoskeleton in vivo. Here we investigate the in vivo function of three specific sites of phosphorylation on MAP2. cAMP-dependent protein kinase activity disrupts the MAP2-microtubule interaction in living HeLa cells and promotes MAP2c localization to peripheral membrane ruffles enriched in actin. cAMP-dependent protein kinase phosphorylates serines within three KXGS motifs, one within each tubulin-binding repeat. These highly conserved motifs are also found in homologous proteins tau and MAP4. Phosphorylation at two of these sites was detected in brain tissue. Constitutive phosphorylation at these sites was mimicked by single, double, and triple mutations to glutamic acid. Biochemical and microscopy-based assays indicated that mutation of a single residue was adequate to disrupt the MAP2-microtubule interaction in HeLa cells. Double or triple point mutation promoted MAP2c localization to the actin cytoskeleton. Specific association between MAP2c and the actin cytoskeleton was demonstrated by retention of MAP2c-actin colocalization after detergent extraction. Specific phosphorylation states may enhance the interaction of MAP2 with the actin cytoskeleton, thereby providing a regulated mechanism for MAP2 function within distinct cytoskeletal domains.  相似文献   

3.
After their translation and folding in the cytoplasm, proteins may be imported into an organelle, associate with a membrane, or rather become part of large, highly localised cytoplasmic structures such as the cytoskeleton. The localisation of a protein is governed by the strength of binding to its immediate target, such as an import receptor for an organelle or a major component of the cytoskeleton, e.g. actin. We have experimentally provided a set of actin-binding proteins with competing targeting information and expressed them at various concentrations to analyse the strength of the signal that governs their subcellular localisation. Our microscopic observations indicate that organellar sorting signals override the targeting preference of most cytoskeletal proteins. Among these signals, the nuclear localisation signal of SV40 is strongest, followed by the oligomerised PHB domain that targets vacuolin to the endosomal surface, and finally the tripeptide SKL mediating transport into the peroxisome. The actin-associated protein coronin, however, can only be misled by the nuclear localisation signal. Interestingly, the targeting behaviour of this model set of hybrid proteins in living Dictyostelium amoebae correlates surprisingly well with the affinities of their constituent signals derived from in vitro experiments conducted in various other organisms. Accordingly, this approach allows estimating the in vivo affinity of a protein to its target even if the latter is not known, as in the case of vacuolin.  相似文献   

4.
The nonerythrocyte isoform of the cytoskeletal protein 4.1R (4.1R) is associated with morphologically dynamic structures during cell division and has been implicated in mitotic spindle function. In this study, we define important 4.1R isoforms expressed in interphase and mitotic cells by RT-PCR and mini-cDNA library construction. Moreover, we show that 4.1R is phosphorylated by p34cdc2 kinase on residues Thr60 and Ser679 in a mitosis-specific manner. Phosphorylated 4.1R135 isoform(s) associate with tubulin and Nuclear Mitotic Apparatus protein (NuMA) in intact HeLa cells in vivo as well as with the microtubule-associated proteins in mitotic asters assembled in vitro. Recombinant 4.1R135 is readily phosphorylated in mitotic extracts and reconstitutes mitotic aster assemblies in 4.1R-immunodepleted extracts in vitro. Furthermore, phosphorylation of these residues appears to be essential for the targeting of 4.1R to the spindle poles and for mitotic microtubule aster assembly in vitro. Phosphorylation of 4.1R also enhances its association with NuMA and tubulin. Finally, we used siRNA inhibition to deplete 4.1R from HeLa cells and provide the first direct genetic evidence that 4.1R is required to efficiently focus mitotic spindle poles. Thus, we suggest that 4.1R is a member of the suite of direct cdc2 substrates that are required for the establishment of a bipolar spindle.  相似文献   

5.
6.
Plasma membrane-cytoskeleton associations involving four membrane proteins (A5, H58, H36, and I20) were studied in developing L8E63 rat skeletal muscle cells using immunofluorescence microscopy and photometry on the basis of three criteria: Triton-insolubility, colocalization with cytoskeletal components, and sensitivity to cytoskeleton-directed drugs. The results presented demonstrate that there are developmental stage-specific associations between membrane proteins and the cytoskeleton during skeletal myogenesis. Several inconsistencies were found with traditional expectations of membrane-cytoskeleton associations. For example, although A5 is Triton-insoluble and sensitive to cytochalasin, its distribution generally does not correspond with any known cytoskeletal structure. Furthermore, the topography of A5 is dependent on the integrity of the plasma membrane. H36 and I20 are completely soluble in Triton and therefore by accepted definitions would not be expected to be associated with any cytoskeletal component. Yet H36 and actin codisrupt in the presence of cytochalasin, while I20, whose distribution does not correspond with microtubules, is uniquely sensitive to their disruption. These results demonstrate that (i) neither Triton-solubility nor colocalization alone predicts all membrane-cytoskeleton associations; some associations between the membrane and cytoskeleton are unstable in nonionic detergent; (ii) the native distribution of proteins in the membrane may not reflect their cytoskeletal associations; and (iii) the topography of some membrane proteins with no apparent association with the cytoskeleton may be greatly influenced by the cell cytoskeleton.  相似文献   

7.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

8.
CLIC4 is a member of the chloride intracellular channel (CLIC) protein family whose principal cellular functions are poorly understood. Recently, we demonstrated that several CLIC proteins, including CLIC4, interact with AKAP350. AKAP350 is concentrated at the Golgi apparatus, centrosome, and midbody and acts as a scaffolding protein for several protein kinases and phosphatases. In this report, we show that endogenous CLIC4 and AKAP350 colocalize at the centrosome and midbody of cultured cells by immunofluorescence microscopy. Unlike AKAP350, CLIC4 is not enriched in the Golgi apparatus but is enriched in mitochondria, actin-based structures at the cell cortex, and the nuclear matrix, indicating that CLIC4-AKAP350 interactions are regulated at specific subcellular sites in vivo. In addition to the centrosome and midbody, CLIC4 colocalizes with AKAP350 and the tight junction protein ZO-1 in the apical region of polarized epithelial cells, suggesting that CLIC4 may play a role in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Biochemical studies show that CLIC4 behaves mainly as a soluble cytosolic protein and can associate with proteins of the microtubule cytoskeleton. The localization of CLIC4 to the cortical actin cytoskeleton and its association with AKAP350 at the centrosome and midbody suggests that CLIC4 may be important for regulating cytoskeletal organization during the cell cycle. These findings lead to the conclusion that CLIC4 and possibly other CLIC proteins have alternate cellular functions that are distinct from their proposed roles as chloride channels.  相似文献   

9.
Association of mRNA with the cytoskeleton represents a fundamental aspect of RNA physiology likely involved in mRNA transport, anchoring, translation, and turnover. We report the initial characterization of a protein complex that binds RNA in a sequence-independent but size-dependent manner in vitro. The complex includes a ~160-kDa protein that is bound directly to mRNA and that appears to be either identical or highly related to a ~1600-kDa protein that binds directly to mRNA in vivo. In addition, the microtubule-associated protein, MAP 1A, a cytoskeletal associated protein is a component of this complex. We suggest that the general attachment of mRNA to the cytoskeleton may be mediated, in part, through the formation of this ribonucleoprotein complex.  相似文献   

10.
Polycystin-1 interacts with intermediate filaments   总被引:7,自引:0,他引:7  
Polycystin-1, the protein defective in a majority of patients with autosomal dominant polycystic kidney disease, is a ubiquitously expressed multi-span transmembrane protein of unknown function. Subcellular localization studies found this protein to be a component of various cell junctional complexes and to be associated with the cytoskeleton, but the specificity and nature of such associations are not known. To identify proteins that interact with the polycystin-1 C-tail (P1CT), this segment was used as bait in a yeast two-hybrid screening of a kidney epithelial cell library. The intermediate filament (IF) protein vimentin was identified as a strong polycystin-1-interacting partner. Cytokeratins K8 and K18 and desmin were also found to interact with P1CT. These interactions were mediated by coiled-coil motifs in polycystin-1 and IF proteins. Vimentin, cytokeratins K8 and K18, and desmin also bound directly to P1CT in GST pull-down and in in vitro filament assembly assays. Two observations confirmed these interactions in vivo: (i) a cell membrane-anchored form of recombinant P1CT decorated the IF network and was found to associate with the cytoskeleton in detergent-solubilized cells and (ii) endogenous polycystin-1 distributed with IF at desmosomal junctions. Polycystin-1 may utilize this association for structural, storage, or signaling functions.  相似文献   

11.
The association of two high molecular weight (HMW) structural proteins with the cytoskeletons of rat pheochromocytoma cells, PC12, is regulated by ATP and other nucleotides. Exposure of PC12 cytoskeletons to ATP resulted in the selective solubilization of two HMW proteins, identified as myosin and a 280 kD microtubule-associated protein. These two proteins were rapidly released from the cytoskeleton following incubation with ATP, GTP, CTP, and ADP; non-hydrolysable ATP analog caused protein release to a less marked extent. The effect of the latter two nucleotides indicated that the release of the myosin and the HMW microtubule-associated protein was likely to be the result of nucleotide-induced conformational changes in one or both proteins. Myosin and the HMW microtubule-associated proteins interact with actin in vitro in a nucleotide-sensitive manner. The present data demonstrate that similar interactions are likely to exist within the intact cytoskeleton and suggest that the associations of these structural proteins with the cytoskeleton are regulated by common mechanisms. The results also suggest that the cells may differentially regulate the stability of a subset of these structural proteins in their interactions with other cytoskeletal elements.  相似文献   

12.
13.
Syntrophins are a family of 59 kDa peripheral membrane‐associated adapter proteins, containing multiple protein‐protein and protein‐lipid interaction domains. The syntrophin family consists of five isoforms that exhibit specific tissue distribution, distinct sub‐cellular localization and unique expression patterns implying their diverse functional roles. These syntrophin isoforms form multiple functional protein complexes and ensure proper localization of signalling proteins and their binding partners to specific membrane domains and provide appropriate spatiotemporal regulation of signalling pathways. Syntrophins consist of two PH domains, a PDZ domain and a conserved SU domain. The PH1 domain is split by the PDZ domain. The PH2 and the SU domain are involved in the interaction between syntrophin and the dystrophin‐glycoprotein complex (DGC). Syntrophins recruit various signalling proteins to DGC and link extracellular matrix to internal signalling apparatus via DGC. The different domains of the syntrophin isoforms are responsible for modulation of cytoskeleton. Syntrophins associate with cytoskeletal proteins and lead to various cellular responses by modulating the cytoskeleton. Syntrophins are involved in many physiological processes which involve cytoskeletal reorganization like insulin secretion, blood pressure regulation, myogenesis, cell migration, formation and retraction of focal adhesions. Syntrophins have been implicated in various pathologies like Alzheimer’s disease, muscular dystrophy, cancer. Their role in cytoskeletal organization and modulation makes them perfect candidates for further studies in various cancers and other ailments that involve cytoskeletal modulation. The role of syntrophins in cytoskeletal organization and modulation has not yet been comprehensively reviewed till now. This review focuses on syntrophins and highlights their role in cytoskeletal organization, modulation and dynamics via its involvement in different cell signalling networks.  相似文献   

14.
Summary The organization of the cytoskeletal proteins, alpha-actinin, vinculin and desmin, was studied in new-born hamster cardiomyocytes in vitro by immunofluorescent microscopy. Since there have been indications that the in vitro organization of certain cytoskeletal elements of cardiomyocytes is not the same as in vivo, the studies were designed to examine the reorganization of these proteins in cultured cells. The observations concentrated on three proteins that are known to be associated in vivo with myofibrillar Z-lines. Beginning at 2 days in culture, and during subsequent days, the proteins examined underwent substantial redistributions before they reorganized back to their associations with the myofibrillar Z-lines. The pattern and time course for these redistributions were characteristic for each protein. Alpha-actinin was the first to return to its typical location at the level of the Z-lines during the second day in culture, followed by desmin at 4 days. Vinculin usually did not become associated with the Z-lines until 6 days in vitro. In the present study, analyses of the distributions and redistributions of particular proteins in the cultured cardiomyocytes have been useful for helping to identify changes in the myocyte as a result of isolation and culture conditions. In addition, a better understanding of the temporal and spatial relationships between cytoskeletal proteins assembling into the Z-line area has been gained.  相似文献   

15.
The molecular basis by which proteins are transported along cytoskeletal tracts from the trans-Golgi network (TGN) to the cell periphery remains poorly understood. Previously, using human autoimmune sera, we identified and characterized a TGN protein, p230/Golgin-245, an extensively coiled-coil protein with flexible amino- and carboxyl-terminal ends, that is anchored to TGN membranes and TGN-derived vesicles by its carboxyl-terminal GRIP domain. To identify molecules that interact with the flexible amino-terminal end of p230, we used this domain as bait to screen a human brain cDNA library in a yeast two-hybrid assay. We found that this domain interacts with the carboxyl-terminal domain of MACF1, a protein that cross-links microtubules to the actin cytoskeleton. The interaction was confirmed by co-immunoprecipitation, an in vitro binding assay, double immunofluorescence images demonstrating overlapped localization in HeLa cells, and co-localization of FLAG-tagged constructs containing the interacting domains of these two proteins with their endogenous partners. Expression in HeLa cells of FLAG-tagged constructs containing the interacting domains of p230 and MACF1 disrupted transport of the glycosyl phosphatidyl inositol-anchored marker protein conjugated with yellow fluorescent protein (YFP-SP-GPI), while trafficking of the transmembrane marker protein, vesicular stomatitis virus glycoprotein conjugated with YFP (VSVG3-GL-YFP), was unaffected. Our results suggest that p230, through its interaction with MACF1, provides the molecular link for transport of GPI-anchored proteins along the microtubule and actin cytoskeleton from the TGN to the cell periphery.  相似文献   

16.
The beaded-chain filament is a unique cytoskeletal structure that appears in the elongating fiber cells during the differentiation of lens epithelial cells to form the mature fiber cells. This beaded-chain structure is made up of two proteins of molecular weight 95 kDa and 49 kDa. As a prerequisite for cloning the cDNAs of these proteins, newborn chicken lens total poly(A+) mRNA was translated in vitro, using a rabbit reticulocyte lysate system and [35S]-L-methionine. The labelled translation products were analyzed by one-and two dimensional gel electrophoresis followed by autoradiography. Immunoprobing of the translation products on Western blots using specific polyclonal antibodies identified the above proteins, and demonstrated the presence and expression of specific mRNAs in the neonatal chick lens, that code for the in vitro synthesis of these two cytoskeletal proteins. These mRNAs are low abundant mRNAs as compared to the crystallin mRNAs.  相似文献   

17.
Lykke-Andersen J  Shu MD  Steitz JA 《Cell》2000,103(7):1121-1131
Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are complexed with hUpf1, in intact cells hUpf3a and hUpf3b are nucleocytoplasmic shuttling proteins, hUpf2 is perinuclear, and hUpf1 cytoplasmic. hUpf3a and hUpf3b associate selectively with spliced beta-globin mRNA in vivo, and tethering of any hUpf protein to the 3'UTR of beta-globin mRNA elicits NMD. These data suggest that assembly of a dynamic hUpf complex initiates in the nucleus at mRNA exon-exon junctions and triggers NMD in the cytoplasm when recognized downstream of a translation termination site.  相似文献   

18.
19.
Translation of poliovirus RNA occurs by the binding of ribosomes to an internal segment of RNA sequence within the 5' untranslated region of the viral RNA. This region is predicted to consist of six domains (I to VI) that possess complex secondary and tertiary structures. Domain IV is a large region in which alterations in the sequence or structure markedly reduce translational efficiency. In this study, we employed RNA mobility shift assays to demonstrate that a protein(s) from uninfected HeLa cell extracts, as well as from neuroblastoma extracts, interacts with the domain IV structure. A mutation in domain IV caused reduced binding of HeLa cell proteins and reduced translation both in vitro and in vivo, suggesting that the binding of at least one of these proteins plays a role in the mechanism of viral translation. UV cross-linking indicated that a protein(s) with a size of approximately 40 kDa interacted directly with the RNA. Using streptavidin beads to capture biotinylated RNA bound to proteins, we were able to visualize a number of HeLa and neuroblastoma cell proteins that interact with domain IV. These proteins have molecular masses of approximately 39, approximately 40, and approximately 42 kDa.  相似文献   

20.
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号