首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental control of flowering and vivipary in timothy (Phleum pratense)   总被引:2,自引:0,他引:2  
Environmental and hormonal control of flowering and vivipary in four Norwegian timothy ( Phleum pratense L.) cultivars has been studied in phytotron and by aseptic culture of inflorescence explants. The critical photoperiod for flowering increased with increasing temperature (12–18°C) and it was 13 to 15 h for the southern and 14 to 16.5 h for the northern cultivars. Diurnal temperature fluctuation significantly stimulated flower formation compared to the corresponding constant temperature treatment. Plants grown in 16-h photoperiod contained normal sexual flowers, but a high percentage of spikes developed in 12- or 14-h photoperiod contained viviparous plantlets. One- to four-weeks in continuous light before treatment with 12-h photoperiod increased the number of spikes per plant, but did not enhance the frequency of vivipary. Experiments with aseptic cultures showed that generative versus vegetative development of timothy inflorescence was affected by plant hormones. Kinetin stimulated the vegetative development and induced proliferation both in inflorescence initials and in spikelets isolated at heading time.  相似文献   

2.
Intermediate-day plants (IDP) flower most rapidly and completely under intermediate photoperiods (e.g., 12–14 h of light), but few species have been identified and their flowering responses are not well understood. We identified Echinacea purpurea Moench as an IDP and, based on our results, propose a novel mechanism for flowering of IDP. Two genotypes of E. purpurea ('Bravado' and 'Magnus') flowered most completely (≥79%) and rapidly and at the youngest physiological age under intermediate photoperiods of 13–15 h. Few (≤14%) plants flowered under 10- or 24-h photoperiods, indicating E . purpurea is a strongly quantitative IDP. Plants were also induced to flower when 15-h dark periods were interrupted with as few as 7.5 min of low-intensity lighting (night interruption, NI). Flowering was progressively earlier as the NI increased to 1 h, but was delayed when the NI was extended to 4 h. Stem length increased by ≥230% as the photoperiod or NI duration increased, until plants received a saturating duration (at 14 or 1 h, respectively). Flowering was inhibited when 16-h photoperiods were deficient in red (R, 600–700 nm) light, and was promoted when photoperiods were deficient in far-red (FR, 700–800 nm) light. Because of our results, we propose the flowering behavior of IDP such as E . purpurea is composed of two mechanisms: a light-dependent response operating through light-labile (type I) phytochrome in which flowering is inhibited by an LD, and a light-stable (type II) phytochrome (i.e., phyB, D and E) response in which flowering is promoted by a short-night.  相似文献   

3.
Growth and flowering of strawberry cultivars were studied in controlled environments. Early cultivars adapted to marginal growing areas in Scandinavia initiated flower buds in all photoperiods including continuous light at temperatures of 12 and 18°C. At 24°C they remained vegetative in photoperiods above 14 or 16 h. The later cultivars ‘Senga Sengana’ and ‘Abundance’ did not initiate flower buds in 24-h photoperiods at any of these temperatures. Their critical photoperiod changed from above 16 h at 12°C to about 14 and 13 h at 18 and 24°C, respectively. It is concluded that at high latitudes temperature is as important as photoperiod in controlling flowering in the strawberry. Stolon formation, petiole elongation, and leaf area growth were stimulated by high temperature and long days, usually with optima at 16 h and 18°C for petiole elongation and 16 h and 24°C for stolon formation. Although growth and flowering responses in general were opposite, the results indicate that they are to some extent independent. The photoperiodic growth responses were mainly of morphogenetic nature. Dry weight of stem and leaves was little influenced by photoperiod when the irradiance was kept constant.  相似文献   

4.
The flowering and fruit-set of a bambara groundnut selectionfrom Ankpa, Nigeria, were studied in greenhouses at constantexposure to photoperiods of 10, 12, 12·5, 13, 14 and16 h. The development of embryos was determined in ovaries fromplants under photoperiods of 11·5 h and 14 h. The beginningof flowering, recorded as the number of days from sowing tothe first open flower, was delayed by lengthening the photoperiod.It started 7 d later under 16 h than under 10 h. This differenceincreased during the production of the next nine open flowers.Lengthening the photoperiod also caused a delay in the beginningof fruit development. Under 13 h it was delayed by more than40 d compared with fruit development under 10 h. Some plantsunder 14 and 16 h even failed to produce pods. After the beginningof fruit development dry matter partitioning to pods was substantiallyless under 14 and 16 h photoperiods than under photoperiodsof 13 h or less; this was reflected in a strong reduction ofpod growth rates. Under an 11·5 h photoperiod two groups of ovaries couldbe distinguished. In both, embryo development was identicalup to 17 d after anthesis, but then the embryos in the firstgroup continued to develop until they were full-grown at about41 d after anthesis, whereas the growth of the embryos in thesecond group stopped. Embryo development under a photoperiodof 14 h was similar to that in the ovaries with discontinuedembryo growth under the 11·5 photoperiod. Healthy-lookingembryos were found in ovaries up to 32 d after anthesis undera photoperiod 14 h. From then onwards embryos started to shriveland degenerate. Finally, the ovaries aborted.Copyright 1993,1999 Academic Press Vigna subterranea, Voandzeia subterranea, bambara groundnut, phenology, photoperiod, day-length, embryo development, harvest index, dry matter partitioning  相似文献   

5.
不同光周期对西红花开花和花丝品质的效应比较   总被引:1,自引:0,他引:1  
为筛选促进西红花开花和提高花丝品质的最佳光周期,以3种不同规格(20~25 g、25~30 g、30~35 g)西红花种球为材料,设置4种光周期处理(8 h/16 h、10 h/14 h、12 h/12 h、14 h/10 h),考察光周期对西红花种球鲜重变化、主芽生长、展叶数量、开花后营养物质含量以及花朵性状和花丝品...  相似文献   

6.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

7.
The role of a light-stable, 123-kD phytochrome in the biological clock, in photoperiodic flowering and shoot growth in extended photoperiods, and in the red light-high irradiance response was studied in Sorghum bicolor using a phytochrome-deficient mutant, 58M (ma3R ma3R), and a near-isogenic wild-type cultivar, 100M (Ma3 Ma3). Since chlorophyll a/b-binding protein mRNA and ribulose bisphosphate carboxylase small subunit mRNA cycled in a circadian fashion in both 58M and 100M grown in constant light, the 123-kD phytochrome absent from 58M does not appear necessary for expression or entrainment of a functional biological clock. Although 58M previously appeared photoperiod insensitive in 12-h photoperiods, extending the photoperiod up to 24 h delayed floral initiation for up to 2 weeks but did not much affect shoot elongation. Thus, although 58M flowers early in intermediate photoperiods, a residual photoperiod sensitivity remains that presumably is not due to the missing 123-kD phytochrome. Since rapid shoot elongation persists in 58M under extended photoperiods despite delayed floral initiation, long photoperiods uncouple those processes. The observed absence of a red light-high irradiance response in 58M, in contrast to the presence of the response in 100M, strengthens the suggestion that the 123-kD phytochrome missing from 58M is a phyB.  相似文献   

8.
The reaction to 12, 14, and 16 h photoperiods of two medium-maturing red clover (Trifolium pratense) populations (cv. Kenland and Cycle 6 of a selection for long stems) under controlled environment conditions was studied. Under both 14 and 16 h photoperiods, Kenland flowered sooner and had shorter stems, more stems per plant, and greater herbage yield per plant but had a similar number of internodes compared to the long stem Cycle 6 population. A daylength between 12 and 14 h was critical for flower initiation in both populations. The critical daylength to induce stem initiation was shorter than the daylength to induce flowering in some genotypes. From half-sib analyses, the narrow–sense heritability of the pre-flowering interval in Kenland ranged from 15 to 23%. The expected response to one cycle of selection (5% selection intensity) for lengthening or shortening the pre-flower interval was 2.3 to 2.4 days at the 16 h photoperiod and 3.0 days at the 14 h photoperiod. Low correlation between pre-flowering interval, stem length, and stem number indicated that it may be possible to change one character without affecting the other two. The need for further studies of the genetic nature of the control of flowering in red clover was indicated.  相似文献   

9.
Photoperiod is the major regulator of reproduction in temperate-zone mammals. Laboratory rats are generally considered to be nonphotoresponsive, but young male Fischer 344 (F344) rats have a uniquely robust response to short photoperiods of 8 h of light. Rats transferred at weaning from a photoperiod of 16 h to photoperiods of < 14 h of light slowed in both reproductive development and somatic growth rate. Those in photoperiods < 13 h of light underwent the strongest responses. The critical photoperiod of F344 rats can be defined as 13.5 h of light, but photoperiods of 相似文献   

10.
Response of maize to photoperiods affects adaption of this crop to environments. We characterize the phenotypes of four temperate‐adapted maize foundation parents, Huangzao 4, Chang 7‐2, Ye 478 and Zheng 58, and two tropically adapted maize foundation parents, M9 and Shuang M9 throughout the growth stage under three constant photoperiod regimes in a daily cycle of 24 h at 28 °C, and analysed expression of 48 photoperiod response‐associated genes. Consequently, long photoperiod (LP) repressed development of the tassels of photoperiod‐sensitive maize lines at V9 stage, and caused subsequent failure in flowering; failure of photoperiod‐sensitive maize lines in flowering under LP was associated with lower expression of flowering‐related genes; photoperiod changes could make a marked impact on spatial layout of maize inflorescence. The larger oscillation amplitude of expression of photoperiod‐responsive genes occurred in LP‐sensitive maize lines. In conclusion, failure in development of tassels at V9 stage under LP is an early indicator for judging photoperiod sensitivity. The adaptation of temperate‐adapted maize lines to LP is due to the better coordination of expression among photoperiod‐sensing genes instead of the loss of the genes. High photoperiod sensitivity of maize is due to high expression of circadian rhythm‐responding genes improperly early in the light.  相似文献   

11.
Floral induction and development requirements of a range of latitudinal and altitudinal Norwegian populations of the wild strawberry Fragaria vesca L. have been studied in controlled environments. Rooted runner plants were exposed to a range of photoperiods and temperatures for 5 weeks for floral induction and then transferred to long day (LD) at 20°C for flower development. A pronounced interaction of temperature and photoperiod was shown in the control of flowering. At 9°C, flowers were initiated in both short day (SD) and LD conditions, at 15 and 18°C in SD only, whereas no initiation took place at 21°C regardless of daylength conditions. The critical photoperiod for SD floral induction was about 16 h and 14 h at 15 and 18°C, respectively, the induction being incomplete at 18°C. The optimal condition for floral induction was SD at 15°C. A minimum of 4 weeks of exposure to such optimal conditions was required. Although the populations varied significantly in their flowering performance, no clinal relationship was present between latitude of origin and critical photoperiod. Flower development of SD-induced plants was only marginally advanced by LD conditions, while inflorescence elongation and runnering were strongly enhanced by LD at this stage. The main shift in these responses took place at photoperiods between 16 and 17 h. Unlike all other populations studied, a high-latitude population from 70°N ('Alta') had an obligatory vernalization requirement. Although flowering and fruiting in its native Subarctic environment and after overwintering in the field in south Norway, this population did not flower in the laboratory in the absence of vernalization, even with 10 or 15 weeks of exposure to SD at 9°C. Flowering performance in the field likewise indicated a vernalization requirement of this high-latitude population.  相似文献   

12.
Adaptation of quinoa (Chenopodium quinoa Willd.) to new regions demands acclimation to day-length, in addition to a host of other abiotic factors. To further elucidate the effects of photoperiod on development of quinoa, two differently adapted cultivars, Achachino (short day) from Bolivia and Titicaca (day-length neutral), were subjected to continuous long (17.5 h) and short (10 h) photoperiod conditions as well as a shift between the two to trigger possible adaptive mechanisms initiated by changes in leaf soluble sugar and ABA concentration. Our findings show both cultivars responding to an increase in photoperiod with significant increases in soluble sugar concentrations and a simultaneous increase in ABA. However, Titicaca exhibited a much stronger ABA response to increase in photoperiod, whereas the increase for Achachino falls within the range of natural diurnal variation. Achachino also showed increasing sensitivity to long photoperiods throughout all reproductive growth stages, resulting in continued flowering, stem elongation and disruption of seed formation, whereas Titicaca was capable of maintaining full seed set under all the photoperiod conditions. Discernible photoperiod-dependent chlorosis of the lower leaves of Titicaca was observed under long photoperiods compared to short photoperiods, implying multi-faceted adaptive responses to changes in photoperiod which may also involve nitrogen and carbon dynamics. Both ABA and sugar signals are possibly involved in regulating the photoperiod-adaptive capability of each cultivar, leading to pronounced differences in growth and reproductive development patterns between the contrasting cultivars.  相似文献   

13.
R. W. King  Bruce G. Cumming 《Planta》1972,103(4):281-301
Summary In C. rubrum, the amount of flowering that is induced by a single dark period interrupting continuous light depends upon the duration of darkness. A rhythmic oscillation in sensitivity to the time that light terminates darkness regulates the level of flowering. The period length of this oscillation is close to 30 hours, peaks of the rhythm occurring at about 13, 43 and 73 h of darkness.Phasing of the rhythm by 6-, 12- and 18-h photoperiods was studied by exposing plants to a given photoperiod at different phases of the free-running oscillation in darkness. The shift in phase of the rhythm was then determined by varying the length of the dark period following the photoperiod; this dark period was terminated by continuous light.With a 6-h photoperiod the timing of both the light-on and light-off signals is shown to control rhythm phasing. However, when the photoperiod is increased to 12 or 18 h, only the light-off signal determines phasing of the rhythm. In prolonged periods of irradiation-12 to 62 h light—a durational response to light overrides any interaction between the timing of the light period and the position of the oscillation at which light is administered. Such prolonged periods of irradiation apparently suspend or otherwise interact with the rhythm so that, in a following dark period, it is reinitiated at a fixed phase relative to the time of the light-off signal to give a peak of the rhythm 13 h after the dusk signal.In daily photoperiodic cycles rhythm phasing by a 6-h photocycle was also estimated by progressively increasing the number of cycles given prior to a single dark period of varied duration.In confirmation of Bünning's (1936) hypothesis, calculated and observed phasing of the rhythm controlling flowering in c. rubrum accounts for the photoperiodic response of this species. Evidence is also discussed which indicates that the timing of disappearance of phytochrome Pfr may limit flowering over the early hours of darkness.  相似文献   

14.
Summary In European starlings (Sturnus vulgaris) exposed in winter to photoperiods of 12 1/2 h or more, testes go through a cycle of growth and regression but then stay inactive for many months. Under a photoperiod of 12 h, in contrast, testes usually go through repeated circannual cycles. We have tested the hypothesis that the failure of starlings held under long photoperiods to initiate a second testicular cycle is a consequence of the fact that photorefractoriness is not broken under photoperiods longer than 12 h. The results of 2 experiments are consistent with this hypothesis: whereas the testes of starlings held continuously in a 13-h photoperiod or in continuous light, remained inactive after an initial testicular cycle, testicular growth was re-initiated after birds were exposed for 4 to 8 weeks to a short 8-h photoperiod.  相似文献   

15.
Echinacea purpurea cv. Bravado and Magnus have been reported to be intermediate daylength plants (IDP) which flower in response to photoperiods between 13 and 16 h. The present experiments with E. purpurea cv. Bravado show that E. purpurea is actually a dual induction short-long-day plant which flowers promptly and consistently when grown in short day (SD) followed by long day (LD) conditions, but not with the reverse sequence of photoperiods. The flowering response increased with increasing duration of both the SD and the LD treatments. A minimum of 4 weeks of SD followed by 12 LD was required for complete flowering. No flowering occurred in continuous SD or LD, whereas a high proportion of plants flowered in continuous 14-h daylength. However, flowering was more variable in intermediate daylength than after transition from SD to LD. Furthermore, photoperiods between 13 and 16 h could satisfy both the primary SD induction and the secondary LD induction requirements. As a number of dual induction plants, both short-long-day and long-short-day plants, have such an overlapping window of effective photoperiods that can trigger both the SD and LD responses, the rationale for maintaining IDP as a separate and genuine flowering response group is seriously challenged.  相似文献   

16.
Summary Gibberellins A3, A4+7 and A13 and (–)-kaurene delay floral-bud initiation and flowering and decrease the number of floral-buds and flowers in Impatiens balsamina under 4-hr photoperiods. They do not have any marked effect under 8-hr photoperiods. Under 16- and 24-hr photoperiods they hasten floral-bud initiation and flowering and increase the number of flowers, the effect being greater under 16- than under 24-hr days and the order of effectiveness being GA4+7>GA3>GA13>(–)-kaurene.While GA3 and GA4+7 promote extension growth, the effect being greater with the former, GA13 and (–)-kaurene do not promote it under any photoperiod. The magnitude of stem elongation in different treatments prior to floral-bud initiation increases from 4- to 8-hr photoperiods but decreases under 16- and 24-hr periods, the effect being more under 24-hr although both 16-and 24-hr photoperiods are noninductive for flowering.  相似文献   

17.
Rates of growth and sexual maturation of microtine rodents vary in response to photoperiod. Previous work with Microtus montanus has shown that the photoperiod present prior to weaning influences how voles will respond to photoperiods seen following weaning. The data presented demonstrate that information about the photoperiod seen by the mother during pregnancy influences the postweaning development of male M. montanus. Adult M. montanus were paired in photoperiods consisting of 8, 14 or 16 h light/day. Their litters were conceived and born in these photoperiods. On the day of birth the litters were recorded and retained in the gestation photoperiod (Groups C8, C14 and C16) or transferred to the 14-h photoperiod (Groups E8 and E16). The growth of males was followed from weaning until 74 days of age, at which time the voles were sacrificed and their reproductive organs weighed. There were no differences in body weight or length between groups at 18 days of age. At 74 days of age the development of the voles could be ranked in the following sequence: C8 less than E16 less than C14 less than E8 less than C16.  相似文献   

18.
Annual rhythms of body weight and reproduction in the European hamster (Cricetus cricetus) are the result of an interaction between seasonal changes in day length (photoperiod) and seasonal changes in the responsiveness of animals to these photoperiods. The present study demonstrates that under natural conditions European hamsters are not able to perceive long photoperiods (i.e., a 16L:8D cycle) before mid-November. This is an important difference to other hamster species, in which regrowth of the gonads can be stimulated by exposure to long photoperiods at any stage of gonadal regression. The experiments also demonstrate the existence of an annual phase of sensitivity to long photoperiods that starts around mid-November and extends until March/April. During this phase of sensitivity, exposure to a long photoperiod (16L:8D) induced gonadal regrowth within 3 wk. Additional experiments with an accelerated photoperiodic lighting regimen indicated that a photoperiod of approximately 13 h is necessary to stimulate gonadal regrowth. Under natural light conditions in Stuttgart (48.46 degrees N), a photoperiod of 13 h is reached by the beginning of April, which fits well with the finding that the majority of animals kept under a natural light:dark cycle had well-developed gonads by the end of April. Nevertheless, these animals showed a rather variable timing of gonadal regrowth, ranging from early January to late April. This is most likely the result of two processes: first, an endogenous mechanism (photorefractoriness) that induces gonadal recrudescence without any photoperiodic information while the animals are still in their hibernation burrows, and second, a direct stimulatory effect of long photoperiods.  相似文献   

19.
Flowering requirements of Scandinavian Festuca pratensis   总被引:1,自引:0,他引:1  
Flowering requirements of three Scandinavian cultivars of Festuca pratensis Huds, have been studied in controlled environments. At 3 and 6°C, primary induction was independent of photoperiod, while short days (8 h) were more effective than long days (24 h) at higher temperatures. The critical temperature for induction was about 15°C in short days and about 12°C in long days. Saturation of induction required 18–20 weeks of exposure to optimal conditions. At temperatures below 12°C both induction and initiation of inflorescence primordia took place in long days, while a transition to long days was required for inflorescence initiation after primary induction in short days. A minimum of 8 long-day cycles were required for flowering of plants primary induced in short days and saturation of flowering required more than 16 cycles. The critical photoperiod for secondary induction was about 13 h. High temperature (21°C) had some devernalization effect in primary induced plants, suppressing flowering compared with 15°C.  相似文献   

20.
Recent studies have shown that the waveform of the rhythm of c-Fos photoinduction in the ventrolateral (vl) part of the suprachiasmatic nucleus (SCN) and that of the rhythm in the spontaneous c-Fos production in the dorsomedial (dm) part of the SCN in rats released into constant darkness depend on the photoperiod under which the animals were previously maintained. The aim of the present study was to find out how the rhythms of c-Fos immunoreactivity in both SCN subdivisions are affected by actual light-dark (LD) cycles with various photoperiods, either artificial or natural ones, that animals may usually experience. Rats were maintained under artificial LD cycles, with either a long (16-h photoperiod) or a short (8-h photoperiod) or under natural daylight. In the latter case, c-Fos rhythms were followed in the summer when the photoperiod lasted about 16 h or in winter when it lasted only 8 h. The rhythms of c-Fos immunoreactivity under natural daylight did not differ significantly from those under corresponding artificial photoperiods. Under a long photoperiod, the morning c-Fos rise in the dm- as well as in the vl-SCN occurred about 4 h earlier than under a short one. In both SCN subdivisions, the interval when the nighttime c-Fos immunoreactivity was low, was shorter under a long than under a short photoperiod by roughly 6 h. The morning c-Fos rise in the dm-SCN always preceded that in the vl-SCN. Whereas in the former one the rise was due to the endogenous dm-SCN rhythmicity, in the latter one the rise was induced by the morning light onset. The results show that whereas c-Fos rhythmicity under actual LD cycles is affected by the photoperiod in both SCN subdivisions, mechanism of c-Fos induction in the dm-SCN differs from that in the vl-SCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号