首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In investigations aimed at characterizing snake venom clot-dissolving enzymes, we have purified a fibrinolytic proteinase from the venom of Bothrops leucurus (white-tailed jararaca). The proteinase was purified to homogeneity by a combination of molecular sieve chromatography on Sephacryl S-200 and ion-exchange chromatography on CM Sepharose. The enzyme called leucurolysin-a (leuc-a), is a 23 kDa metalloendopeptidase since it is inhibited by EDTA. PMSF, a specific serine proteinase inhibitor had no effect on leuc-a activity. The amino acid sequence was established by Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. Leuc-a is related in amino acid sequence to reprolysins. The protein is composed of 200 amino acid residues in a single polypeptide chain, possessing a blocked NH2-terminus and containing no carbohydrate. The proteinase showed proteolytic activity on dimethylcasein and on fibrin (specific activity=21.6 units/mg and 17.5 units/microg, respectively; crude venom=8.0 units/mg and 9.5 units/microg). Leuc-a degrades fibrin and fibrinogen by hydrolysis of the alpha chains. Moreover, the enzyme was capable of cleaving plasma fibronectin but not the basement membrane protein laminin. Leuc-a cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B chain. The pH optimum of the proteolysis of dimethylcasein by leuc-a was about pH 7.0. Antibody raised in rabbit against the purified enzyme reacted with leuc-a and with the crude venom of B. leucurus. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood, and unlike some other venom fibrinolytic metallopeptidases, leuc-a is devoid of hemorrhagic activity when injected (up to 100 microg) subcutaneously into mice.  相似文献   

2.
A membrane proteinase from Pseudomonas aeruginosa, called insulin-cleaving membrane proteinase (ICMP), was located in the outer membrane leaflet of the cell envelope. The enzyme is expressed early in the logarithmic phase parallel to the bacterial growth during growth on peptide rich media. It is located with its active center facing to the outermost side of the cell, because its whole activity could be measured in intact cells. The very labile membrane proteinase was solubilized by non-ionic detergents (Nonidet P-40, Triton X-100) and purified in its amphiphilic form to apparent homogeneity in SDS-PAGE by copper chelate chromatography and two subsequent chromatographic steps on Red-Sepharose CL-4B (yield 58.3%, purification factor 776.3). It consisted of a single polypeptide chain with a molecular mass of 44.6 kDa, determined by mass spectrometry. ICMP was characterized to be a metalloprotease with pH-optimum in the neutral range. The ICMP readily hydrolyzed Glu(13)-Ala(14) and Tyr(16)-Leu(17) bonds in the insulin B-chain. Phe(25)-Tyr(26) and His(10)-Leu(11) were secondary cleavage sites suggesting a primary specificity of the enzyme for hydrophobic or aromatic residues at P'(1)-position. The ICMP differed from elastase, alkaline protease and LasA in its cleavage specificity, inhibition behavior and was immunologically diverse from elastase. The amino acid sequence of internal peptides showed no homologies with the known proteinases. This outer membrane proteinase was capable of specific cleavage of alpha and beta fibrinogen chains. Among the p-nitroanilide substrates tested, substrates of plasminogen activator, complement convertase and kallikrein with arginine residues in the P(1)-subsite were the substrates best accepted, but they were only cleaved at a very low rate.  相似文献   

3.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

4.
Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage   总被引:14,自引:0,他引:14  
Human recombinant stromelysin-1 was shown to cleave four types of collagen (types II, IX, X, and XI) prepared from bovine and rat cartilages at specific sites. Stromelysin-1 cleaved salt-soluble native molecules of type IX collagen into two main triple-helical fragments, COL1 and COL2,3. Protein microsequencing identified the exact cleavage sites in the NC2 domain of all three chains, alpha 1(IX), alpha 2(IX), and alpha 3(IX). Stromelysin-1 also acted as a "telopeptidase," in that it efficiently clipped intact molecules of types II and XI collagens at sites just inside their terminal cross-linking hydroxylysine residues. Native molecules of type X collagen were cleaved by stromelysin-1 within their triple helical domains at a COOH-terminal site that reduced the alpha 1(X) chain size by 10 kDa. These findings suggest an important role for stromelysin in the turnover and remodeling of the collagenous matrix of cartilage both normally and in degenerative joint disease.  相似文献   

5.
The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and either Gln-172-Tyr-173 or Phe-23-Phe-24 were the first, second, and third bonds cleaved, respectively. Other cleavage sites included Asn-19-Leu-20, Phe-32-Gly-33, Tyr-104-Lys-105, Leu-142-Ala-143, Phe-150-Arg-151, Gln-152-Phe-153, Leu-169-Gly-170, and Thr-171-Gln-172. The proteinase had a broad specificity for the amino acid residues at the P1 and P'1 positions but showed a preference for hydrophobic residues at the P2, P3, P4, P'2, P'3, and P'4 positions.  相似文献   

6.
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1alpha is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1alpha in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1alpha isoforms LD78beta and LD78alpha were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78beta and LD78alpha were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78beta resulted in loss of chemotactic activity. The role of these proteases in LD78beta and LD78alpha degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefevre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78beta and LD78alpha. These findings suggest that severe periodontal tissue destruction in Papillon-Lefevre syndrome may be related to excess accumulation of LD78beta and LD78alpha and dysregulation of the microbial-induced inflammatory response in the periodontium.  相似文献   

7.
The localization of the N- and C-terminal regions of pigment-binding polypeptides of the bacterial photosynthetic apparatus of Rhodobacter sphaeroides was investigated by proteinase K treatment of chromatophore and spheroplast-derived vesicles and amino acid sequence determination. Under conditions of proteinase K treatment of chromatophores, which left the in vivo absorption spectrum and the membrane intact, 15 and 46 amino acyl residues from the N-terminal regions of the L and M subunits, respectively, of the reaction center polypeptides were removed. The N termini are therefore exposed on the cytoplasmic surface of the membrane. The C-terminal domain of the light-harvesting B800-850 alpha and B870 alpha polypeptides was found to be exposed on the periplasmic surface of the membrane. A total of 9 and 13 amino acyl residues were cleaved from the B800-850 alpha and B870 alpha polypeptides, respectively, when spheroplasts were treated with proteinase K. The N-terminal regions of the alpha polypeptides were not digested in either membrane preparation and were apparently protected from proteolytic attack. Seven N-terminal amino acyl residues of the B800-850 beta polypeptide were removed after the digestion of chromatophores. C-terminal residues were not removed after the digestion of chromatophores or spheroplasts. The C termini seem to be protected from protease attack by interaction with the membrane. Therefore, the N-terminal regions of the beta polypeptides are exposed on the cytoplasmic membrane surface. The C termini of the beta polypeptides are believed to point to the periplasmic space.  相似文献   

8.
Ovalbumin is an elastase substrate   总被引:1,自引:0,他引:1  
Ovalbumin is partially homologous in sequence with the proteinase inhibitors alpha 1-proteinase inhibitor and anti-thrombin III. The region of sequence in ovalbumin which corresponds to the reactive sites of these proteinase inhibitors is susceptible to attack by subtilisin, elastase, thermolysin, bromelain, and Bacillus cereus protease. The esterase activity of elastase is not inhibited by ovalbumin, but ovalbumin is efficiently cleaved by elastase. In contrast with these proteases, trypsin does not cleave ovalbumin.  相似文献   

9.
The light-harvesting complex LH2 of Rubrivivax gelatinosus has an oligomeric structure built from alpha-beta heterodimers containing three bacteriochlorophylls and one carotenoid each. The alpha subunit (71 residues) presents a C-terminal hydrophobic extension (residues 51-71) which is prone to attack by an endogenous protease. This extension can also be cleaved by a mild thermolysin treatment, as demonstrated by electrophoresis and by matrix-assisted laser desorption-time of flight mass spectrometry. This cleavage does not affect the pigment binding sites as shown by absorption spectroscopy. Electron microscopy was used to investigate the structures of the native and thermolysin cleaved forms of the complexes. Two-dimensional crystals of the reconstituted complexes were examined after negative staining and cryomicroscopy. Projection maps at 10 A resolution were calculated, demonstrating the nonameric ring-like organization of alpha-beta subunits. The cleaved form presents the same structural features. We conclude that the LH2 complex is structurally homologous to the Rhodopseudomonas acidophila LH2. The hydrophobic C-terminal extension does not fold back in the membrane, but lays out on the periplasmic surface of the complex.  相似文献   

10.
Proteinase K and trypsin were used to determine the orientation of the light-harvesting B800-850 alpha and beta polypeptides within the chromatophores (inside-out membrane vesicles) of the mutant strain Y5 of Rhodopseudomonas capsulata. With proteinase K 7 amino acid residues of the B800-850 alpha polypeptide were cleaved off up to position Trp-7--Thr-8 of the N terminus, and 11 residues were cleaved off up to position Leu-11-Ser-12 of the beta chain N terminus. The C termini of the B800-850 alpha and beta polypeptides, including the hydrophobic transmembrane portions, remained intact. It is proposed that the N termini of the alpha and beta subunits, each containing one transmembrane alpha-helical span, are exposed on the cytoplasmic membrane surface and the C termini are exposed to or directed toward the periplasm.  相似文献   

11.
A Bacillus vietnamensis metalloprotease (BVMP) with high affinity toward collagen was isolated and purified from the culture supernatant of Bacillus vietnamensis 11-4 occurring in Vietnamese fish sauces. The BVMP gene was cloned and its nucleotide and coded amino acid sequences determined. BVMP consists of 547 amino acid residues, with the zinc-binding sites conserved in common metalloproteases. It shares 57% amino acid identity with thermolysin originating from Bacillus thermoproteolyticus. The three-dimensional structure of BVMP was deduced by computer-aided modeling with the use of the known three-dimensional thermolysin structure as a template. Like thermolysin, BVMP cleaved the oxidized insulin B-chain at the peptide bonds involving the N-terminal sides of hydrophobic and aromatic amino acids. BVMP also showed high hydrolytic activity toward gelatin, collagen, casein, and elastin, especially toward the skeletal proteins at increased NaCl concentration. The high activity was found to be due to enhanced affinity to the substrates. Kinetical data on BVMP indicated that the Km values for the hydrolysis of Cbz-GPGGPA as a collagen model decreased as the concentration of added NaCl increased. Some contribution of this enzyme during the aging of fish sauces at high salt concentrations can thus be expected.  相似文献   

12.
Limited proteolysis of porcine plasma fibronectin by the 56 kDa proteinase (56K proteinase) (EC 3.4.24.4) from Serratia marcescens released six polypeptides: a 27 kDa peptide, the heparin-binding domain which comprises the NH2-terminal end; a 50 kDa peptide, a mid-molecule that mediates binding to gelatin or collagen; a 160 kDa peptide, that contained the heparin-binding domain with cell-spreading activity; and a 140 and a 20 kDa peptide which released from the 160 kDa peptide. Each fragment was purified and characterized by its chemical and biological properties, and it was found that they were respectively different domains. Both the 160 and the 140 kDa peptide contained one cysteine per mole of peptide. The 160 kDa peptides were connected by a 6 kDa peptide, which was present at the COOH-terminal end of the molecule and was biologically inactive. Only 6 kDa peptide contained a disulfide bond and produced 3 kDa peptide after reduction, whereas other fragments did not change with or without reduction on SDS-polyacrylamide gel electrophoresis. NH2-terminal sequence analyses of the released peptides showed that the 56K proteinase cleaved the fibronectin between the Arg-Thr (located at two different sites), Leu-Ser and Gln-Glu bonds. Out of 118 Arg residues, there are nine sequences containing Arg-Thr, and two of them near or at an interdomain location (at Arg 259 and 2239) were cleaved. Out of 124 Leu residues, there are 11 Leu-Ser sequences and only one, at 687, was cleaved. The above fragments with functional domain activity could be aligned according to the previously reported amino-acid sequence of human or bovine plasma fibronectin. The treatment of fibroblast cells by the 56K proteinase resulted in loss of morphological integrity and extracellular matrix.  相似文献   

13.
alpha 3 beta 1 (VLA-3), a member of the integrin family of cell adhesion receptors, may function as a receptor for fibronectin, laminin, and collagen. A partial cDNA clone (2.4 kb) for the human alpha 3 subunit was selected from an endothelial cell lambda gt11 cDNA library by specific antibody screening. Several overlapping cDNA clones were subsequently obtained, of a total length of 4.6 kb from various cDNA libraries. The reconstructed alpha 3 cDNA was expressed on the surface of chinese hamster ovary cells as detected by an alpha 3- specific mAb after transfection, suggesting that the cDNA is authentic. Within this sequence was an open reading frame, encoding for 1,051 amino acids, including a signal peptide of 32 residues, a long extracellular domain (959 residues), a transmembrane domain (28 residues), and a short cytoplasmic segment (32 residues). Overall, the alpha 3 amino acid sequence was 25-37% similar to the other integrin alpha subunits that are cleaved, with most similarity to the alpha 6 sequence (37%), and less similarity to those alpha subunits that have I domains (15-20%, excluding the I domain sequence itself). Features most like those in other alpha subunits are (a) the positions of 18/19 cysteine residues, (b) three potential metal binding domains of the general structure DX(D/N)X(D/N)GXXD, and (c) the predicted transmembrane domain. The mass of alpha 3 calculated from its amino acid sequence is 113,505. The human alpha 3 sequence was 89% identical to hamster galactoprotein b3, and 70% similar to the chicken CSAT antigen band 2 protein partial sequence, suggesting that these two polypeptides are homologues of human alpha 3.  相似文献   

14.
Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys(185)-Lys(220) cross-link, which is unique to the PrPβ and thus may be indicative of the conformational change involved in the formation of prion protein oligomers.  相似文献   

15.
The circulating enzyme, α2-antiplasmin cleaving enzyme (APCE), has very similar sequence homology and proteolytic specificity as fibroblast activation protein (FAP), a membrane-bound proteinase. FAP is expressed on activated fibroblasts associated with rapid tissue growth as in embryogenesis, wound healing, and epithelial-derived malignancies, but not in normal tissues. Its presence on stroma suggests that FAP functions to remodel extracellular matrix (ECM) during neoplastic growth. Precise biologic substrates have not been defined for FAP, although like APCE, it cleaves α2-antiplasmin to a derivative more easily cross-linked to fibrin. While FAP has been shown to cleave gelatin, evidence for cleavage of native collagen, the major ECM component, remains indistinct. We examined the potential proteolytic effects of FAP or APCE alone and in concert with selected matrix metalloproteinases (MMPs) on collagens I, III, and IV. SDS-PAGE analyses demonstrated that neither FAP nor APCE cleaves collagen I. Following collagen I cleavage by MMP-1, however, FAP or APCE digested collagen I into smaller peptides. These peptides were analogous to, yet different from, those produced by MMP-9 following MMP-1 cleavage. Amino-terminal sequencing and mass spectrometry analyses of digestion mixtures identified several peptide fragments within the sequences of the two collagen chains. The proteolytic synergy of APCE in the cleavage of collagen I and III was not observed with collagen IV. We conclude that FAP works in synchrony with other proteinases to cleave partially degraded or denatured collagen I and III as ECM is excavated, and that derivative peptides might function to regulate malignant cell growth and motility.  相似文献   

16.
It is assumed that vitronectin and other adhesion molecules induce cell spreading. We found that vascular smooth muscle cells require unidentified plasma components besides adhesion molecules to spread in fibrin gel, a likely provisional matrix at wound sites. By purification, the plasma components were found to be alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, and alpha(2)-macroglobulin. The chemically inactivated alpha(1)-proteinase inhibitor and alpha(2)-macroglobulin lose the spreading activity, indicating that these proteins function as proteinase inhibitors but not as adhesion molecules. Not only anti-integrin (alpha(v)beta(3) and alpha(5)beta(1)) antibodies but also anti-fibronectin antibodies inhibit the cell spreading. The spreading occurs without the addition of fibronectin and integrins, suggesting that cells produce these molecules. In the absence of the proteinase inhibitors, Western blot analysis shows that the fibronectin is degraded in fibrin gel, while it is intact in the presence of the inhibitors. Thus, the proteinase inhibitors prevent adhesion molecules such as fibronectin from being degraded by a cell-derived proteinase(s) and thus play a role in cell spreading.  相似文献   

17.
Proteinase Ak.1 was produced during the stationary phase of Bacillus sp. Ak.1 cultures. It is a serine proteinase with a pI of 4.0, and the molecular mass was estimated to be 36.9 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 60 and 70 degrees C, with half-lives of 13 h and 19 min at 80 and 90 degrees C, respectively. Maximum proteolytic activity was observed at pH 7.5 with azocasein as a substrate, and the enzyme also cleaved the endoproteinase substrate Suc-Ala-Ala-Pro-Phe-NH-Np (succinyl-alanyl-alanyl-prolyl-phenylalanine p-nitroanalide). Major cleavage sites of the insulin B chain were identified as Leu-15-Tyr-16, Gln-4-His-5, and Glu-13-Ala-14. The proteinase gene was cloned in Escherichia coli, and expression of the active enzyme was detected in the extracellular medium at 75 degrees C. The enzyme is expressed in E. coli as an inactive proproteinase at 37 degrees C and is converted to the mature enzyme by heating the cell-free media to 60 degrees C or above. The proproteinase was purified to homogeneity and had a pI of 4.3 and a molecular mass of 45 kDa. The NH2-terminal sequence was Ala-Ser-Asn-Asp-Gly-Val-Glu-, showing the exact signal peptide cleavage point. Heating the proenzyme resulted in the production of active proteinase with an NH2-terminal sequence identical to that of the native enzyme. The characteristics of the cloned proteinase were identical to those of the native enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The complete sequence of Bacillus pasteurii cytochrome c-553 was determined by standard methods of Edman degradation of overlapping peptides combined with mass spectrometry. The protein contains 92 residues and a single heme-binding site. It is most similar to Bacillus licheniformis, Bacillus PS3, and Bacillus subtilis cytochromes c-551, which are lipoproteins that are partially solubilized through proteolytic cleavage of the N-terminal diacyl-glyceryl-cysteine membrane anchor. The high yield of the B. pasteurii cytochrome c-553, together with evidence that shorter forms of the cytochrome occur in the mixture of otherwise pure protein, suggests that the membrane anchor is very susceptible to proteolysis and that the soluble form of the cytochrome is therefore released from the membrane upon cell breakage. A sequence-based calculation of the protein secondary structure suggests the presence of a typical cytochrome helical fold with a random-coil N-terminus tail.  相似文献   

19.
We have investigated the interaction of alpha 2-macroglobulin (alpha 2M) with the serine proteinase urokinase, an activator of plasminogen. Urokinase formed sodium dodecyl sulfate stable complexes with purified alpha 2M and with alpha 2M in plasma. These complexes could be visualized after polyacrylamide gel electrophoresis by protein blots using 125I-labeled anti-urokinase antibody or by fibrin autography, a measure of fibrinolytic activity. According to gel electrophoretic analyses under reducing conditions, urokinase cleaved alpha 2M subunits and formed apparently covalent complexes with alpha 2M. Urokinase cleaved only about 60% of the alpha 2M subunits maximally at a mole ratio of 2:1 (urokinase: alpha 2M). Binding of urokinase to alpha 2M protected the urokinase active site from inhibition by antithrombin III-heparin and inhibited, to a significant extent, plasminogen activation by urokinase. Reaction of urokinase with alpha 2M caused an increase in intrinsic protein fluorescence and, thus, induced the conformational change in alpha 2M that is characteristic of its interactions with active proteinases. Our results indicate that both in plasma and in a purified system the alpha 2M-urokinase reaction is functionally significant.  相似文献   

20.
Type VI collagen is a transformation-sensitive glycoprotein of the extracellular matrix of fibroblasts. We have isolated and sequenced several overlapping cDNA clones (4153 bp) which encode the entire alpha 2 subunit of chicken type VI collagen. The deduced amino acid sequence predicts that the alpha 2(VI) polypeptide consists of 1015 amino acid residues that are arranged in four domains: a hydrophobic signal peptide of 20 residues, an amino-terminal globular domain of 228 residues, a collagenous segment of 335 residues and a carboxy-terminal globular domain of 432 residues. The collagenous domain contains seven Arg-Gly-Asp tripeptide units, some of which are likely to be used as cell-binding sites. The globular domains contain three homologous repeats with an average length of 180 amino acid residues. These repeats show a striking similarity to the collagen-binding motifs found in von Willebrand factor and cartilage matrix protein. We therefore speculate that the globular domains of the alpha 2(VI) polypeptide may interact with collagenous structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号