首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F2-isoprostanes are prostaglandin F2-like compounds that are formed nonenzymatically by free radical mediated peroxidation of arachidonic acid. Intermediate in the pathway of the formation of isoprostanes are labile prostaglandin H2-like bicyclic endoperoxides (H2-isoprostanes), which are reduced to F2-isoprostanes and also undergo rearrangement in vivo to form E-ring and D-ring isoprostanes, isothromboxanes, and highly reactive acyclic gamma-ketoaldehdyes (isoketals). Docosahexaenoic acid (C22:6omega3) is highly enriched in neurons in the brain and is highly susceptible to oxidation. Free radical mediated oxidation of docosahexaenoic acid results in the formation of isoprostane-like compounds (neuroprostanes). F4- and E4/D4-neuroprostanes as well as neuroketals have been shown to be produced in vivo. Finally, we recently discovered a new pathway of lipid peroxidation that forms compounds with a substituted tetrahydrofuran ring (isofurans). Oxygen concentrations differentially modulate the formation of isoprostanes and isofurans; at elevated oxygen concentrations, the formation of isofurans is favored whereas the formation of isoprostanes is disfavored.  相似文献   

2.
The isoprostanes are a new class of natural products produced in vivo by a non-enzymatic free-radical-induced peroxidation of polyunsaturated fatty acid. In the case of arachidonic acid, for example, four classes of isoprostanes can be produced. Because of the specific structural features distinguishing them from other free-radical-generated products, e.g., HETEs, etc., the isoprostanes can provide an exclusive and selective index for the oxidant component of several inflammatory and degenerative diseases. The possible mechanisms of formation of the individual isoprostanes is discussed in detail. Class III products, such as 8-iso-PGF and 8-iso-PGE2 have been shown to be vasoconstrictors and modulate platelet function. Several synthetic representatives from the four classes of arachidonic-acid-derived isoprostanes have already been prepared by total synthesis. These synthetic standards have been used for the identification and quantitation of these isoprostanes in biological fluids using gas chromatography/mass spectrometry methodology.  相似文献   

3.
Isoprostanes, neuroprostanes, isofurans, and neurofurans have all become attractive biomarkers of oxidative damage and lipid peroxidation in brain tissue. Asphyxia and subsequent reoxygenation cause a burst of oxygen free radicals. Isoprostanes and isofurans are generated by free radical attacks of esterified arachidonic acid. Neuroprostanes and neurofurans are derived from the peroxidation of docosahexanoic acid, which is abundant in neurons and could therefore more selectively represent oxidative brain injury. Newborn piglets (age 12-36h) underwent hypoxia until the base excess reached -20mmol/L or the mean arterial blood pressure dropped below 15mm Hg. They were randomly assigned to receive resuscitation with 21, 40, or 100% oxygen for 30min and then ventilation with air. The levels of isoprostanes, isofurans, neuroprostanes, and neurofurans were determined in brain tissue (ng/g) isolated from the prefrontal cortex using gas chromatography-mass spectrometry (GC/MS) with negative ion chemical ionization (NICI) techniques. A control group underwent the same procedures and observations but was not submitted to hypoxia or hyperoxia. Hypoxia and reoxygenation significantly increased the levels of isoprostanes, isofurans, neuroprostanes, and neurofurans in the cerebral cortex. Nine hours after resuscitation with 100% oxygen for 30min, there was nearly a 4-fold increase in the levels of isoprostanes and isofurans compared to the control group (P=0.007 and P=0.001) and more than a 2-fold increase in neuroprostane levels (P=0.002). The levels of neuroprostanes and neurofurans were significantly higher in the piglets that were resuscitated with supplementary oxygen (40 and 100%) compared to the group treated with air (21%). The significance levels of the observed differences in neuroprostanes for the 21% vs 40% comparison and the 21% vs 100% comparison were P<0.001 and P=0.001, respectively. For neurofurans, the P values of the 21% vs 40% comparison and the 21% vs 100% comparison were P=0.036 and P=0.025, respectively. Supplementary oxygen used for the resuscitation of newborns increases lipid peroxidation in brain cortical neurons, a result that is indicative of oxidative brain damage. These novel findings provide new knowledge regarding the relationships between oxidative brain injury and resuscitation with oxygen.  相似文献   

4.
Lipid peroxidation is a major outcome of free radical-mediated injury to brain, where it directly damages membranes and generates a number of oxidized products. Some of the chemically and metabolically stable oxidation products are useful in vivo biomarkers of lipid peroxidation. These include the isoprostanes (IsoPs) and isofurans (IsoFs), derived from arachidonic acid (AA), and neuroprostanes (NeuroPs), derived from docosahexaenoic acid (DHA). We have shown increased levels of IsoPs, NeuroPs, and IsoFs in diseased regions of brain from patients who died from advanced Alzheimer's disease (AD) or Parkinson's disease (PD). Increased cerebrospinal fluid (CSF) levels of IsoPs are present in patients with AD or Huntington's disease (HD) early in the course of their illness, and CSF IsoPs may improve the laboratory diagnostic accuracy for AD. In contrast, quantification of IsoPs in plasma and urine of AD patients has yielded inconsistent results. These results indicate that brain lipid peroxidation is a potential therapeutic target early in the course of AD and HD, that CSF IsoPs may aid in the assessment of anti-oxidant experimental therapeutics and laboratory diagnosis of AD.  相似文献   

5.
Plasma and urinary levels of malondialdehyde-like products (MDA) and isoprostanes were identified as markers of in vivo lipid peroxidation in an animal model of CCl4 poisoning. We sought to determine the extent to which the formation of these oxidation products is influenced by inhibition of the cyclooxygenase enzymes which catalytically generate proinflammatory lipid peroxidation products known as prostaglandins and thromboxane. In the present studies, after induction of oxidant stress in rats with CCl4, lipid peroxidation products measured in plasma and urine demonstrate that isoprostanes and MDA can be partially inhibited by cyclooxygenase inhibitors, albeit to different extents. The lowering of isoprostane and MDA formation, however, may not to due primarily to the diminution of catalytic generation of isoprostanes or MDA by the cyclooxygenases but, rather, may be the result of the suppression of nonenzymatic lipid peroxidation. This is suggested since 8,12-iso-iPF2alpha-VI is also reduced by indomethacin, yet, unlike other isoprostanes and MDA, it is not generated catalytically by the cyclooxygenase. Thus, although the two cyclooxygenase inhibitors we tested have statistically significant effects on the measurements of both isoprostanes and MDA in this study, the results provide evidence that these lipid-degradation products primarily constitute markers of oxidative stress.  相似文献   

6.
The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. This article provides current information on the origin and function of polyunsaturated fatty acids in nature, lipid peroxidation of cellular membranes: enzymatic (lipoxygenases) and non-enzymatic. The latest knowledge on in vivo biomarkers of lipid peroxidation including isoprostanes, isofurans and neuroprostanes are discussed. A further focus is placed on analytical methods for studying lipid peroxidation in membranes with emphasis in chemiluminescence and its origin, rod outer segments of photoreceptors, the effect of antioxidants, fatty acid hydroperoxides and lipid protein modifications. Since rhodopsin, the major integral protein of rod outer segments is surrounded by phospholipids highly enriched in docosahexaenoic acid, the author proposes the outer segments of photoreceptors as an excellent model to study lipid peroxidation using the chemiluminescence assay since these membranes contain the highest concentration of polyunsaturated fatty acids of any vertebrate tissue and are highly susceptible to oxidative damage.  相似文献   

7.
Imbusch R  Mueller MJ 《Plant physiology》2000,124(3):1293-1304
Isoprostanes F(2) are arachidonate autoxidation products in mammals that have been shown to be induced during several human disorders associated with enhanced free-radical generation. Isoprostanes F(2) represent not only extremely reliable markers of oxidative stress in vivo, but they also exert potent biological effects. Therefore, it has been postulated that isoprostanoids are mediators of oxidant injury in vivo. Higher plants, however, do not synthesize arachidonic acid or isoprostanes. Here we show that a series of isoprostane F(2) analogs termed phytoprostanes F(1) (previously dinor isoprostanes F(1)) are formed by an analogous pathway from alpha-linolenate in plants. High-performance liquid chromatography and gas chromatography-mass spectrometry methods using [(18)O](3)phytoprostanes F(1) as internal standard have been developed to quantify phytoprostanes F(1). In fresh peppermint (Mentha piperita) leaves, phytoprostanes F(1) were found in free form (76 ng/g of dry weight) and at about 150-fold higher levels esterified in lipids. It is notable that these levels of phytoprostanes F(1) are more than two orders of magnitude higher than the basal levels of isoprostanes F(2) in mammalian tissues. Furthermore, wounding, as well as butyl hydroperoxide or cupric acetate stress triggered a dramatic increase of free and esterified phytoprostanes F(1). Thus phytoprostanes F(1) may represent a sensitive measure of oxidative damage in plants similar to isoprostanes in mammals. However, one of the most exciting issues to be clarified is the possibility that linolenate-derived phytoprostanes F(1) exert biological activities in plants and/or animals.  相似文献   

8.
Free radical-initiated lipid autoxidation in low density lipoprotein (LDL) has been implicated in the pathogenesis of atherosclerosis. Oxidation of the lipid components of LDL leads to a complex mixture of hydroperoxides, bicyclic endoperoxides, monocyclic peroxides, and serial cyclic peroxides. The oxidation compounds and/or their decomposition products can modify protein components, which may lead to various diseases. A novel class of peroxides (termed dioxolane-isoprostanes) having a bicyclic endoperoxide moiety characteristic of the isoprostanes and a dioxolane peroxide functionality in the same molecule was identified in the product mixture formed from in vitro autoxidation of cholesteryl arachidonate. The same products are also detected in in vitro oxidized LDL. Various mass spectrometric techniques have been applied to characterize these new peroxides. The structure of these compounds has also been confirmed by independent synthesis. We reason, based on the free radical mechanism of the transformation, that only the 12- and 8-peroxyl radicals (those leading to 12-HPETE and 8-HPETE) of arachidonate can form these new peroxides. We also suggest that the formation of these peroxides provides a rationale to explain the fact that 5- and 15-series isoprostanes are formed in preference to 8- and 12-series. Furthermore, series of other isoprostanes, such as dioxolane A(2), D(2), E(2), etc., can be derived from the dioxolane-isoprostane peroxides. These findings offer further insights into the oxidation products of arachidonate and the opportunity to study their potential biological relevance.  相似文献   

9.
Summary. Isoprostanes, non-enzymatic peroxidation products of arachidonic acid, are attractive biomarkers of oxidative stress in research in biology, medicine and nutrition. For the appropriate use of biomarkers it is required that these are both biologically and technically valid. Whereas the biological validity of isoprostanes is well-established, it is technically quite complicated to measure isoprostanes and its metabolites in body fluids, and its rapid disappearance from plasma may hamper practical application. This paper shortly introduces isoprostanes as a biomarker for studies with humans, describes a novel fast and sensitive method for measuring isoprostanes in plasma by high-performance liquid chromatography and tandem mass spectrometry, and provides several examples of the use of the method in studies in humans. By taking care of the biological and technical validity of this biomarker it is possible to establish the antioxidant effects of some food ingredients in studies with human volunteers.  相似文献   

10.
Lipid peroxidation is one of the major outcomes of free radical-mediated injury that directly damages membranes and generates a number of secondary products, both from fission and endocyclization of oxygenated fatty acids that possess neurotoxic activity. Numerous studies have demonstrated increased lipid peroxidation in brain of patients with Alzheimer's disease (AD) compared with age-matched controls. These data include quantification of fission and endocyclized products such as 4-hydroxy-2-nonenal, acrolein, isoprostanes, and neuroprostanes. Immunohistochemical and biochemical studies have localized the majority of lipid peroxidation products to neurons. A few studies have consistently demonstrated increased cerebrospinal fluid (CSF) levels of isoprostanes in AD patients early in the course of their dementia, and one study has suggested that CSF isoprostanes may improve the laboratory diagnostic accuracy for AD. Similar analyses of control individuals over a wide range of ages indicate that brain lipid peroxidation is not a significant feature of usual aging. Quantification of isoprostanes in plasma and urine of AD patients has yielded inconsistent results. These results indicate that brain lipid peroxidation is a potential therapeutic target in probable AD patients, and that CSF isoprostanes may aid in the assessment of antioxidant experimental therapeutics and the laboratory diagnosis of AD.  相似文献   

11.
Oxidation products of lipids, proteins, and DNA in the blood, plasma, and urine of rats were measured as part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative stress. This article is the second report of the nationwide Biomarkers of Oxidative Stress Study using acute CCl4 poisoning as a rodent model for oxidative stress. The time-dependent (2, 7, and 16 h) and dose-dependent (120 and 1200 mg/kg i.p.) effects of CCl4 on concentrations of lipid hydroperoxides, TBARS, malondialdehyde (MDA), isoprostanes, protein carbonyls, methionine sulfoxidation, tyrosine products, 8-hydroxy-2'-deoxyguanosine (8-OHdG), leukocyte DNA-MDA adducts, and DNA-strand breaks were investigated to determine whether the oxidative effects of CCl4 would result in increased generation of these oxidation products. Plasma concentrations of MDA and isoprostanes (both measured by GC-MS) and urinary concentrations of isoprostanes (measured with an immunoassay or LC/MS/MS) were increased in both low-dose and high-dose CCl4-treated rats at more than one time point. The other urinary markers (MDA and 8-OHdG) showed significant elevations with treatment under three of the four conditions tested. It is concluded that measurements of MDA and isoprostanes in plasma and urine as well as 8-OHdG in urine are potential candidates for general biomarkers of oxidative stress. All other products were not changed by CCl4 or showed fewer significant effects.  相似文献   

12.
The isoprostanes, 8-iso-PGF2alpha and 8-iso-PGE2, are powerful vasoconstrictors in vitro and in vivo. Increased formation of 8-iso-PGF2alpha was detected in atherosclerotic patients. In this disease endothelial injuries appear, followed by a reduced release of nitric oxide (NO). Our results show that the vasoconstrictor effects of 8-iso-PGF2alpha as well as of 8-iso-PGE2 were amplified after endothelial damage of the vasculature of the isolated perfused rabbit ear. Also vasoconstrictions induced by both isoprostanes were amplified by perfusions with the NO-synthase blocker N(G)-nitro-L-arginine methylester (L-NAME) at a final concentration of 100 micromol/l. Therefore, we can assume that the amplification of the vasoconstrictor effects of the isoprostanes used after damage of endothelium might be mainly due to the reduced formation of NO.  相似文献   

13.
This study aims to determine if isoprostanes accurately reflect in vivo lipid peroxidation or whether they are influenced by the lipid content of the diet. Isoprostanes were measured in urine of healthy subjects under different conditions of lipid intake and under conditions of oxidative stress (fasting). We found that isoprostanes were not influenced by the lipid content of the diet: the urinary level remained constant over 24 h as well as over 4 consecutive days when switching from high to low lipid intake. Urinary isoprostane excretion was increased by 40% following a 24 h fast. We concluded that urinary isoprostane excretion reflects endogenous lipid peroxidation in vivo.  相似文献   

14.
Oxidative stress leads to lipid peroxidation and may contribute to the pathogenesis of lesions in multiple sclerosis (MS), an autoimmune disease characterized by inflammatory as well as degenerative phenomena. Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are a new class of sensitive specific markers for in vivo lipid peroxidation. In this study 26 patients (15 females and 11 males; mean age 48.2 ± 15.2 year; mean disease duration 10.0 ± 6.5 year) with secondary progressive MS (SPMS) and 12 healthy controls were enrolled. In patients with multiple sclerosis the lipid peroxidation as the level of urine isoprostanes and the level of thiobarbituric acid reactive species (TBARS) in plasma were estimated. Moreover, we estimated the total antioxidative status (TAS) in plasma. It was found that the urine isoprostanes level was over 6-fold elevated in patients with SPMS than in control (P < 0.001). In SPMS patients TBARS level was also statistically higher than in controls (P < 0.01). However, we did not observed any difference of TAS level in serum between SPMS patients and controls (P > 0.05). In patients with SPMS the lipid peroxidation and oxidative stress measured as the increased level of isoprostanes was observed. Thus, we suggest that the level of isoprostanes may be used as non-invasive marker for a determination of oxidative stress what in turn, together with clinical symptoms, may determine an specific antioxidative therapy in SPMS patients.  相似文献   

15.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F2-isoprostane production while under conditions with deficient antioxidant capacity, D2- and E2-isoprostanes are formed. F2-isoprostanes (F2-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F2-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F2-isoP functions as a marker of oxidative stress in asthma, and that F2-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

16.
Isoeicosanoids are free radical-catalyzed isomers of the enzymatic products of arachidonic acid. They are formed in situ in cell membranes, are cleaved, circulate, and are excreted in urine. Isomers of prostaglandin F(2alpha), the F(2)-isoprostanes, have emerged as sensitive indices of lipid peroxidation in vivo. Analogous compounds formed from docosahexaenoic acid (DHA) are termed neuroprostanes and are more abundant than isoprostanes (iPs) in brain. Isofurans are another class of isoeicosanoids characterized by a substituted tetrahydrofuran ring. They are preferentially formed, relative to iPs, under conditions of elevated oxygen tension. Here, we report the discovery of neurofurans (nFs), the analogous family of compounds formed from DHA. Formation of nFs is characterized by mass spectrometry and confirmed by oxidation of DHA in vitro and following CCl(4) administration in liver in vivo. It is demonstrated that the levels of nFs are elevated in the brain cortex of a mouse model of Alzheimer disease and are depressed in mouse brain cortex by deletion of p47(phox), an essential component of the phagocyte NADPH oxidase. Measurement of the nFs may ultimately prove useful in diagnosis, timing, and selection of dose in the treatment and chemoprevention of neurodegenerative disease.  相似文献   

17.
Measurement of Lipid Peroxidation   总被引:16,自引:0,他引:16  
Lipid peroxidation results in the formation of conjugated dienes, lipid hydroperoxides and degradation products such as alkanes, aldehydes and isoprostanes. The approach to the quantitative assessment of lipid peroxidation depends on whether the samples involve complex biological material obtained in vivo, or whether the samples involve relatively simple mixtures obtained in vituo. Samples obtained in vivo contain a large number of products which themselves may undergo metabolism. The measurement of conjugated diene formation is generally applied as a dynamic quantitation e.g. during the oxidation of LDL, and is not generally applied to samples obtained in vivo. Lipid hydroperoxides readily decompose, but can be measured directly and indirectly by a variety of techniques. The measurement of MDA by the TBAR assay is non-specific, and is generally poor when applied to biological samples. More recent assays based on the measurement of MDA or HNE-lysine adducts are likely to be more applicable to biological samples, since adducts of these reactive aldehydes are relatively stable. The discovery of the isoprostanes as lipid peroxidation products which can be measured by gas chromatography mass spectrometry or immunoassay has opened a new avenue by which to quantify lipid peroxidation in vivo, and will be discussed in detail.  相似文献   

18.
Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 microg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.  相似文献   

19.
General and spinal anesthesia are used extensively in orthopedic surgery. However, these methods of anesthesia may result in different amounts of oxygen being delivered to the patient. Ischemia/reperfusion injury after release of the tourniquet initiates free radical-mediated oxidative stress. F2-isoprostanes are reliable markers of in vivo lipid peroxidation. However, under conditions of high oxygen tension, isofurans are formed. We aimed to compare plasma isofurans and F2-isoprostanes in spinal versus general anesthesia in patients undergoing knee-replacement surgery in a randomized, blinded study. Thirty-nine patients were randomized to spinal (SA; n = 19) or general anesthesia (GA; n = 20). Blood was collected before anesthesia, and a tourniquet was then applied to the limb during surgery. After release of the tourniquet, blood samples were collected at 30 min, 2 h, and 24 h for measurement of plasma F2-isoprostanes and isofurans by gas chromatography–mass spectrometry. The two groups were comparable in age and body mass index. Plasma F2-isoprostanes were significantly lower in the GA patients compared with the SA patients (p = 0.045). In contrast, the GA patients had significantly elevated plasma isofurans (p = 0.032). Increased isofurans during GA compared with SA are likely to reflect increased oxidative stress due to elevated oxygen concentrations during GA. Further studies are required to assess the implications of these findings on perioperative outcomes.  相似文献   

20.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F?-isoprostane production while under conditions with deficient antioxidant capacity, D?- and E?-isoprostanes are formed. F?-isoprostanes (F?-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F?-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F?-isoP functions as a marker of oxidative stress in asthma, and that F?-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号