首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of core histone proteins to DNA, measured as a function of [NaCl[ is a reversible process. Dissociation and reassociation occurs in two stages. Between 0.7 and 1.2 M NaCl H2a H2b bind non-cooperatively as an equimolar complex with deltaGo = 1.6 Kcals/mole at 4 degree C and 1.0 M NaCl. Between 1.2 and 2.0 M NaCl H3 and H4 bind cooperatively as an equimolar complex with delta Go = 7.4 Kcal/mole at 4 degree C and 1.0 M NaCl. The proper binding of H2a and H2b requires the presence of bound H3 and H4. Nuclease digestion of the H3-H4 DNA produces a tetramer of H3-H4 bound to fragments of DNA 145, 125 and 104 base pairs long. Thus an H3-H4 tetramer can protect fragments of DNA as long as those found in complete core particles and must therefore span the nucleosome core particle.  相似文献   

2.
The distribution of newly synthesized core histones H2A, H2B, H3 and H4 relative to the DNA strand synthesized in the same generation has been examined in replicating Chinese Hamster ovary cells. Cells are grown for one generation in [14C]-lysine and thymidine, and then for one generation in [3H]-lysine and 5-bromodeoxyuridine (BrUdRib) and a further generation in unlabeled lysine and thymidine. This protocol produces equal amounts of unifilarly substituted and unsubstituted DNA. Monomer nucleosomes isolated from chromatin containing these two types of DNA can be distinguished by crosslinking with formaldehyde and banding to equilibrium in CsCl density gradients. The results indicate that the core histones are equally distributed between the two types of DNA. These findings are discussed in terms of current models for chromatin replication; they do not support any long term association of newly replicated histones with either the leading or lagging side of the replication fork.  相似文献   

3.
J Jordano  F Montero  E Palacián 《Biochemistry》1984,23(19):4285-4289
We have studied the structural properties of nucleosomal particles deficient in histones H2A and H2B produced by modification of histone amino groups with dimethylmaleic anhydride [Jordano, J., Montero, F., & Palacián, E. (1984) Biochemistry (preceding paper in this issue)]. Digestion with DNase I of residual particles containing only 15% of the original H2A . H2B complement produces only discrete DNA fragments no longer than 70 nucleotides. As compared with the original nucleosomes, thermal denaturation of the residual particles shows a decrease from 140 to about 90 in the number of nucleotide base pairs per particle that melt at the highest temperature transition as well as a drop in the temperature of this transition. Circular dichroism spectra of the residual particles give ellipticity values around 275 nm, much higher than those corresponding to the control nucleosomes, which appears to indicate a loss in the compact DNA tertiary structure. When regeneration of the modified amino groups of the residual particles takes place in the presence of the complementary fraction containing histones H2A and H2B, but not in its absence, nucleosomal particles with the structural properties of the original nucleosomes are reconstituted. Therefore, the structural change observed in the residual particles can be assigned to the lack of histones H2A and H2B and not to the modified amino groups of the histones present in the residual particles. The results are consistent with the stabilization by histones H2A and H2B of a DNA length of 50-70 base pairs per nucleosome.  相似文献   

4.
Histone H2B from calf thymus was irradiated with 50 or 100 ns pulses of 16 MeV electrons in N2O-saturated aqueous solution at pH 9 in the presence of NaN3. All tyrosine moieties in the histone were found to be freely accessible to the attack of .N3 radicals (formed by the reaction .OH + N3(-)----OH- + .N3). At sufficiently high concentrations of H2B, tyrosyl radicals were formed with G(TyrO.) = 5.4/100 eV and dityrosine groups with G(dityr) = 1.6/100 eV, indicating that about 60 per cent of tyrosyl radicals formed bisphenolic products. There is no polymer effect with respect to G(dityr) as inferred from comparison with other authors' data obtained with low molecular weight compounds. Kinetic measurements revealed that tyrosyl radicals reacted in two modes, a fast one with a value of tau 1/2 of about several milliseconds and a slow second order process also in the millisecond range. The fast process is assigned to intramolecular reactions of tyrosyl radicals generated in close proximity to each other and the slow process to intermolecular self reactions of isolated tyrosyl radicals distributed statistically in the solution. There is a polymer effect with respect to the rate constant of the slow process: 2k8 = 4.8 X 10(7) dm3 mol-1 s-1 (H2B) and 2k8 = 4 X 10(8) dm3 mol-1 s-1 (Lys-Tyr-Lys, Prütz et al. (1983)). The five histones contained in calf thymus were isolated chromatographically with the aid of two gels, Bio-Gel P-60 (BioRad) and Sephadex G100 (Pharmacia).  相似文献   

5.
Gel filtration and sedimentation studies have previously established that the vertebrate animal core histone octamer is in equilibrium with an (H3-H4)2 tetramer and an H2A-H2B dimer [Eickbush, T. H., & Moudrianakis, E. N. (1978) Biochemistry 17, 4955-4964; Godfrey, J. E., Eickbush, T. H., & Moudrianakis, E. N. (1980) Biochemistry 19, 1339-1346]. We have investigated the core histone octamer of wheat (Triticum aestivum L.) and have found it to be much more stable than its vertebrate animal counterpart. When vertebrate animal histone octamers are subjected to gel filtration in 2 M NaCl, a trailing peak of H2A-H2B dimer can be clearly resolved from the main octamer peak. When the plant octamer is subjected to the identical procedure, there is no trailing peak of H2A-H2B dimer, but rather a single peak containing the octamer. A sampling across the octamer peak from leading to trailing edge shows no change in the ratio of H2A-H2B to (H3-H4)2. Surprisingly, the plant octamer shows the same stability at 0.6 M NaCl, a salt concentration in which the vertebrate animal octamer dissociates into dimers and tetramers. Equilibrium sedimentation data indicate that the assembly potential of the wheat histones in 2 M NaCl is very high at all protein concentrations above 0.1 mg mL-1. In order to disrupt the forces stabilizing the plant histone octamer at high histone concentrations, the concentration of NaCl must be lowered to approximately 0.3 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Phylogenetic analysis of the core histones H2A, H2B, H3, and H4.   总被引:19,自引:1,他引:19       下载免费PDF全文
Despite the ubiquity of histones in eukaryotes and their important role in determining the structure and function of chromatin, no detailed studies of the evolution of the histones have been reported. We have constructed phylogenetic trees for the core histones H2A, H2B, H3, and H4. Histones which form dimers (H2A/H2B and H3/H4) have very similar trees and appear to have co-evolved, with the exception of the divergent sea urchin testis H2Bs, for which no corresponding divergent H2As have been identified. The trees for H2A and H2B also support the theory that animals and fungi have a common ancestor. H3 and H4 are 10-fold less divergent than H2A and H2B. Three evolutionary histories are observed for histone variants. H2A.F/Z-type variants arose once early in evolution, while H2A.X variants arose separately, during the evolution of multicellular animals. H3.3-type variants have arisen in multiple independent events.  相似文献   

8.
The very lysine rich histone, H1, isolated from a variety of sources interacts preferentially with superhelical DNA compared to relaxed DNA duplexes. The nature of this specific interaction has been investigated by studying the ability of various purified fragments of H1 histone from calf thymus to recognize and bind superhelical DNA. The data suggest that the globular region of the H1 histone molecule (amino acid residues 72-106) is involved in the recognition of superhelical DNA. Thus, the H1 histone carboxy-terminal fragment, 72-212, resembles native H1 histone both quantitatively and qualitatively in its ability to discriminate between and bind to superhelical and relaxed DNA while the H1 histone carboxy-terminal fragment, residues 106-212, has lost this specificity, binding superhelical and relaxed DNA equally well. Furthermore, under conditions in which the globular region of the intact H1 histone has been unfolded, the molecule loses its ability to discriminate between superhelical and relaxed DNA, and binds both forms of DNA equally.  相似文献   

9.
In view of the likely role of H1-H1 interactions in the stabilization of chromatin higher order structure, we have asked whether interactions can occur between the globular domains of the histone molecules. We have studied the properties of the isolated globular domains of H1 and the variant H5 (GH1 and GH5) and we have shown (by sedimentation analysis, electron microscopy, chemical cross-linking and nucleoprotein gel electrophoresis) that although GH1 shows no, and GH5 little if any, tendency to self-associate in dilute solution, they bind highly cooperatively to DNA. The resulting complexes appear to contain essentially continuous arrays of globular domains bridging 'tramlines' of DNA, similar to those formed with intact H1, presumably reflecting the ability of the globular domain to bind more than one DNA segment, as it is likely to do in the nucleosome. Additional (thicker) complexes are also formed with GH5, probably resulting from association of the primary complexes, possibly with binding of additional GH5. The highly cooperative nature of the binding, in close apposition, of GH1 and GH5 to DNA is fully compatible with the involvement of interactions between the globular domains of H1 and its variants in chromatin folding.  相似文献   

10.
In non-denaturing low ionic strength gels, the titration of core DNA with H2A,H2B produces five well-defined bands. Quantitative densitometry and cross-linking experiments indicate that these bands are due to the successive binding of H2A,H2B dimers to core DNA. Only two bands are obtained with DNA-(H3,H4) samples. The slower of these bands is broad and presumably corresponds to two complexes containing one and two H3,H4 tetramers, respectively. In gels of higher ionic strength, DNA-(H2A,H2B) samples produce an ill-defined band, suggesting that the lifetime of the complexes containing H2A,H2B is relatively short. However, the low intensity of the free DNA band observed in these gels indicates that most of the DNA is associated with H2A,H2B. In agreement with this, our results obtained using different techniques (sedimentation, cross-linking, trypsin and nuclease digestions, and thermal denaturation) demonstrate that the association of H2A,H2B with core DNA occurs in free solution in both the absence and presence of NaCl (0.1 to 0.2 M). The low mobilities of DNA-(H2A,H2B) complexes, together with sedimentation and DNase I digestion results, indicate that the DNA in these complexes is not folded into the compact structure found in the core particle. Furthermore, non-denaturing gels have been used to study the dynamic properties of DNA-(H2A,H2B) and DNA-(H3,H4) complexes in 0.2 M-NaCl. Our results show that: (1) H2A,H2B and H3,H4 can associate, respectively, with DNA-(H3,H4) and DNA-(H2A,H2B) to produce complexes containing the four core histones; (2) DNA-(H2A,H2B) and DNA-(H3,H4) are able to transfer histones to free core DNA; (3) an exchange of histone pairs takes place between DNA-(H2A,H2B) and DNA-(H3,H4) and produces complexes with the same histone composition as that of the normal nucleosome core particle; and (4) although both histone pairs can exchange, histones H2A,H2B show a higher tendency than H3,H4 to migrate from one incomplete core particle to another. The complexes produced in these reactions have the same compact structure as reconstituted core particles containing the four core histones. Our kinetic results are consistent with a reaction mechanism in which the transfer of histones involves direct contacts between the reacting complexes. The possible participation of these spontaneous reactions on the mechanism of nucleosome assembly is discussed.  相似文献   

11.
The binding of calmodulin to myelin basic protein and histone H2B.   总被引:3,自引:1,他引:3       下载免费PDF全文
1. A calmodulin-binding protein of apparent mol.wt. 19 000 has been purified from chicken gizzard. Similar proteins have been isolated from bovine uterus, rabbit skeletal muscle and rabbit liver. 2. These proteins migrated as an equimolar complex with bovine brain calmodulin on electroporesis on polyacrylamide gels in the presence of Ca2+ and 6M-urea. The complex was dissociated in the presence of EGTA. 2. The chicken gizzard calmodulin-binding protein has been shown to be identical with chicken erythrocyte histone H2B on the basis of partial amino acid sequence determination. 4. The calmodulin-binding proteins of apparent mol.wt. 22 000 isolated previously from bovine brain [Grand & Perry (1979) Biochem. J. 183, 285-295] has been shown, on the basis of partial amino-acid-sequence determination, to be identical with myelin basic protein. 5. The activation of bovine brain phosphodiesterase by calmodulin is inhibited by excess bovine uterus calmodulin-binding protein (histone H2B). 6. The phosphorylation of myelin basic protein by phosphorylase kinase is partially inhibited, whereas the phosphorylation of uterus calmodulin-binding protein (histone H2B) is unaffected by calmodulin or troponin C. 7. The subcellular distribution of myelin basic protein and calmodulin suggests that the two proteins do not exist as a complex in vivo.  相似文献   

12.
When whole steer kidney nuclei were treated with dimethyl-3,3'-dithiobisproprionimidate, N,N'-bis(2-carboxyimidomethyl) tartaramide dimethyl ester, or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide under approximately physiological ionic conditions, H1 histone was cross-linked to each of the four histones in the nucleosome core. The carbodiimide reagent, which introduces no atoms between the amino acid side chains being joined, seemed to give the same result as did the longer di-imidate cross-linking reagents. When conditions were optimized for the production of of H1-containing dimers, the total yield of H1-core histone heterodimers was nearly equal to the yield of H1 homodimers. Naturally occurring H1 dimers and cross-linked heterodimers of high mobility group proteins 14 and 17 with H1 and core histones were also observed.  相似文献   

13.
14.
The interaction of histone H5 labelled with fluorescein isothiocyanate (FITC) with DNA has been studied by fluorescence titration, and diffusion-enhanced fluorescence energy transfer (DEFET) measurements with Tb(III) lanthanide chelates as donors. Analysis of the binding data by the model of Schwarz and Watanabe (J.Mol.Biol. 163, 467-484 (1983)) yielded a mean stoichiometry of 60 nucleotides per H5 molecule, independently of ionic strength, in the range of 3 to 300 mM NaCl, at very low DNA concentration (6 microM in mononucleotide). It ensues an approximate electroneutrality of the saturated complexes. Histone H5 molecules appeared to be clustered along the DNA lattice in clusters containing on average 3 to 4 H5 molecules separated by about 79 base pairs, at mid-saturation of the binding sites. The interaction process was found highly cooperative but the cooperativity parameter was also insensitive to ionic strength in the above range. DEFET experiments indicated an important decrease of accessibility of the FITC label to the TbHED3A and TbEDTA- chelates with ionic strength in the 0 to 100 mM NaCl range. In the presence of DNA, H5 appears already folded at low ionic strength so that the FITC probe is also not accessible to the donor chelate. The present study constitutes an indispensable preliminary step to further studies on the localization of histone H5 in condensed chromatin structures.  相似文献   

15.
The molecular mechanisms of nickel-induced malignant cell transformation include effects altering the structure and covalent modifications of core histones. Previously, we found that exposure of cells to Ni(II) resulted in truncation of histones H2A and H2B and thus elimination of some modification sites. Here, we investigated the effect of Ni(II) on one such modification, ubiquitination, of histones H2B and H2A in nuclei of cultured 1HAEo- and HPL1D human lung cells. After 1-5 days of exposure, Ni(II) up to 0.25 mM stimulated mono-ubiquitination of both histones, while at higher concentrations a suppression was found. Di-ubiquitination of H2A was not affected except for a drop after 5 days at 0.5 mM Ni(II). The decrease in mono-ubiquitination coincided with the appearance of truncated H2B that lacks the K120 ubiquitination site. However, prevention of truncation did not avert the decrease of H2B ubiquitination, indicating mechanistic independence of these effects. The changes in H2B ubiquitination did not fully coincide with concurrent changes in the nuclear levels of the ubiquitin-conjugating enzymes Rad6 and UbcH6. Overall, our results suggest that dysregulation of H2B ubiquitination is a part of Ni(II) adverse effects on gene expression and DNA repair which may assist in cell transformation.  相似文献   

16.
The globular domain of histone H5 (GH5) was prepared by trypsin digestion of H5 that was extracted from chicken erythrocyte nuclei with NaCl. Electron microscopy, sucrose gradient centrifugation, native agarose gel electrophoresis and equilibrium density gradient ultracentrifugation show that GH5 binds co-operatively to double-stranded DNA. The electron microscopic images suggest that the GH5-DNA complexes are very similar in structure to co-operative complexes of intact histone H1 (or its variants) with double-stranded DNA, studied previously, which have been proposed to consist of two parallel DNA double helices sandwiching a polymer of the protein. For complexes with GH5 or with intact H1, naked DNA co-sediments with the protein-DNA complexes through sucrose gradients, and DNA also appears to protrude from the ends and sides of the complexes; measurements of the protein-DNA stoichiometry in fractionated samples may not reflect the stoichiometry in the complexes. An estimate of the stoichiometry obtained from the buoyant density of fixed GH5-DNA complexes in CsCl suggests that sufficient GH5 is present in the complexes for the GH5s to be in direct contact, as required by a simple molecular mechanism for the co-operative binding. Chemical crosslinking demonstrates that GH5s are in close proximity in the complexes. In the absence of DNA, GH5-GH5 interactions are weak or non-existent.  相似文献   

17.
18.
19.
Using nucleosomes reconstituted on a defined sequence of DNA, we have investigated the question as to whether the N-terminal tails of core histones play a role in determining the site of binding of a linker histone. Reconstitutes used histone cores of three types: intact, lacking the N-terminal H3 tails, or lacking all tails. In each case the same, single defined position for the histone core was observed, using high-resolution mapping. The affinity for binding of linker histone H1(o) was highest for the intact cores, lowest for the tailless cores. However, the location of the linker histone, as judged by micrococcal nuclease protection, was exactly the same in each case, an asymmetric site of about 17 bp to one side of the core particle DNA.  相似文献   

20.
Herren T  Burke TA  Das R  Plow EF 《Biochemistry》2006,45(31):9463-9474
Tethering of plasminogen to cell surfaces controls plasmin formation and, thereby, influences pericellular proteolysis and cell migration. Modulation of cellular plasminogen binding sites provides a mechanism for regulation of these events. In this study, two distinct models, phorbol ester-stimulated adhesion of U937 monocytoid cells and culturing of peripheral blood neutrophils, treatments which modulate plasminogen binding sites, have been examined to determine the molecular basis for the upregulation of plasminogen receptors. Membranes were isolated from cell populations, with and without upregulated plasminogen binding capacities, and analyzed by [(125)I]plasminogen ligand blotting of gel transfers. Approximately 15 different [(125)I]plasminogen-binding proteins were discerned in the membrane fractions, and only relatively minor differences in the intensities of individual bands were noted in the different cell populations. The notable exception was the presence of a 17 kDa band, which was selectively and markedly enhanced in the membranes from cells with enhanced plasminogen binding capacities. The 17 kDa protein was isolated from both cell types, and amino acid sequencing of peptide fragments identified the same protein, histone H2B. Increased expression of histone H2B was observed on stimulated U937 cells and cultured neutrophils by confocal microscopy with an antibody raised to the carboxy-terminal octopeptide sequence of histone H2B. This antibody or its Fab fragments substantially decreased the level of binding of plasminogen to these cultured neutrophils and stimulated U937 cells that exhibited elevated levels of binding but not to nonstimulated cells. Thus, histone H2B represents a regulated plasminogen receptor, which contributes significantly to the plasminogen binding capacity of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号