首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature on the activity of acid phosphatase [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] immobilized as a gel layer on the inner wall of ultrafiltration tubular membranes by both copolymerization/gelation and cogelation has been investigated. Both forms of gel-immobilized enzyme showed fairly good stability, the activation energy of their inactivation being significantly lower than that of the free enzyme and of the heat denaturation of proteins in general. The shear effect on the cogelled enzyme was also studied at different temperatures and Reynolds numbers. The results indicated that the cogelled enzyme is a more convenient form for continuous operation in the tubular membrane reactor (TMR), a reactor configuration particularly suitable for industrial applications.  相似文献   

2.
 There is strong evidence that acid phosphatase (AcPase) plays an important role in the catabolism of the glomerular basement membrane (GBM) and the removal of macromolecular debris resulting from ultrafiltration. Recent enzyme histochemical investigations provide new evidence of the antithrombotic and anti-inflammatory function of ADPase and on the distribution of AcPase in mouse kidney tubule cells. By means of 3 mM cerium as the trapping agent and 1 mM p-nitrophenyl phosphate as the substrate, extralysosomal AcPase could be demonstrated at the ultrastructural level. Following a mild perfusion fixation (2% formaldehyde + 0.07% glutaraldehyde), an effective postfixation and short enzyme incubations (20 min) with microwave irradiation, highly specific enzyme histochemical reaction product and reasonable structural preservation were obtained. Extralysosomal, membrane-bound AcPase was observed along the endoplasmic reticulum, the trans-Golgi cisternae, the nuclear envelope, basal infoldings of the proximal and distal tubular cells and on glomerular profiles, e.g. cell membranes of podocytes, endothelium and basement membrane. Large amounts of extralysosomal AcPase were observed in the basement membrane of glomeruli, in contrast to no AcPase activity in the tubular and mesangial basement membrane. The observed difference in AcPase activity in the tubular epithelial basement membrane and the GBM supports the idea that AcPase in GBM specifically serves in the clearance of macromolecular debris to facilitate ultrafiltration. In the GBM a laminar distribution is observed, suggesting that both epithelial and endothelial cells are involved in the production of AcPase. Accepted: 16 September 1997  相似文献   

3.
Catalase has been immobilized within sandwich membranes prepared by the photoinduced grafting of an epoxy-diacrylate prepolymer onto commercial asymmetric cellulose membranes. The enzymatic activity of the membrane composite of hydrogen peroxide decomposition has been studied in a recirculation apparatus under tangential flow conditions without ultrafiltration. The enzymatic membranes were exposed to very low mechanical stresses and showed a very good catalytic performance and durability. Initial reaction rates, measured at 25 degrees C as a function of both substrate concentration and enzyme amount immobilized per unit membrane surface, indicate that the mechanism of action of catalase is not altered after immobilization, although substrate diffusion through the original thin layer of membranes may become rate controlling. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
Invertase as well as as amyloglucosidase were immobilized within asymmetyric ultrafiltration membranes that were prepared from polysulfone or homogeneously modified polysulfone. The chemical modification was carried out by sulfonation and halomethylation. This additional change of the surface properties of the capillaries within the membrane offers the possibilities for various types of enzyme fixation, namely adsorption, charge interactions, or covalent bonding. By variation of the immobilization conditions the distribution of the enzyme could be adjusted over the membrane's cross section. At a distinct enzyme concentration in the loading solution a homogeneous enzyme distribution within the membrane could be verified. This was shown by diffusion experiments. Under ultrafiltration conditions using a solution that contains membrane-impermeable macromolecules as well as a membrane-permeable solute like saccharose the residence time within the membrane was increased due to gel formation atop the membrane yet the kinetic was no affected. The nonpermeable soluble starch was not reacted by the amyloglucosidase membrane, indicating that the skin layer was free of enzymes. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
Different methods were evaluated to immobilise Pig Liver Esterase (PLE) in hollow fibre membranes. Four covalent bonding techniques (using epoxy, imidazol, amino and carboxylic acid terminal groups) were tested to link the enzyme to microporous nylon membranes. Physical immobilisation was also studied, by entrapment of the enzyme inside the microporous structure of a polysulfone asymmetric ultrafiltration membrane. The entrapment method lead to a higher retention of enzymatic activity for a longer period of time. This technique was selected to be used in a biphasic membrane bioreactor where the microporous hydrophilic membrane, containing the enzyme, is used to separate an aqueous from an organic phase, in which the substrate is dissolved. Different enzyme loading procedures were studied in the biphasic reactor and the resulting axial and radial enzyme distribution in the hollow fibre module were related to the global enzymatic activity.  相似文献   

6.
The effect of a gas/liquid two-phase flow on the recovery of an enzyme was evaluated and compared with standard crossflow operation when confronted with the microfiltration of a high-fouling yeast suspension. Ceramic tubular and flat sheet membranes were used. At constant feed concentration (permeate recycling) and transmembrane pressure, the results obtained with the tubular membrane were dependent on the two-phase flow pattern. In comparison with single-phase flow performances at the same liquid velocity, the enzyme transmission was maintained at a high level with a bubble flow pattern but it decreased by 70% with a slug flow, whatever the flow rate ratio. Identical results were obtained with flat sheet membranes: for the highest flow rate ratio, the enzyme transmission was reduced by 70% even though the permeate flux was improved by 240%. During diafiltration experiments with the tubular membrane, it was found that a bubble flow pattern led to a 13% higher enzyme recovery compared to single-phase flow conditions, whereas with a slug flow the enzyme recovery was strongly reduced. With bubble flow conditions, energy consumption was minimal, confirming that this flow pattern was the most suitable for enzyme recovery.  相似文献   

7.
Asymmetric ultrafiltration membranes suitable for covalent bonding of urease can be prepared from membranes based upon polyamide or polysulfone. Because the original membrane polymers are not chemically reactive, they have to be converted in such a way that known reactions for enzyme fixation can be used such as the diazo, the acyl-acid, the carbodiimide, and the methylbromide reaction. The enzyme was fixed within the porous substructure of the membrane. The amount of enzyme immobilized at the membrane dense skin was found to be negligible. The kinetics can be described according to the Michaelis-Menten model. Compared to the native urease, the activity of the membrane-bonded enzyme was very low. The reasons can be sought in the transmembrane transport and in the fixation procedure as well.  相似文献   

8.
Cellulose hydrolysis by Celluclast 1.5L (Novozymes A/S, Denmark) enzyme preparation was studied in a special tubular membrane reactor, where a porous stainless steel filter was covered by a non-woven technical textile layer providing a fine, hairy surface for simultaneous adsorption of both the cellulose particles and the biocatalyst. Solka Floc BW 200 powder and Mavicell pellets were used as substrates in the process. Beyond the adsorption studies, the composite membrane was characterized, having 30 l/m2 bar h hydraulic permeability and an ability to retain both cellulose and enzyme, while glucose (product) permeated easily across the membrane. Using Solka Floc substrate experiments were carried out in both the hairy tubular and a “normal” flat sheet membrane bioreactor. It was found that 10% higher average conversion was possible to achieve in the special layered tubular unit compared to the “traditional” ultrafiltration membrane reactors. Finally, milled and sieved Mavicell pellets were applied as substrates, and 70% conversion was reached with the pretreated fraction.  相似文献   

9.
Purification at commercial scale of viruses and virus vectors for gene therapy applications and viral vaccines is a major separations challenge. Tangential flow ultrafiltration has been developed for protein purification. Here tangential flow ultrafiltration of parvoviruses has been investigated. Because these virus particles are small (18-26 nm), removal of host cell proteins will be challenging. The results obtained here indicate that 30, 50, and 100 kDa membranes reject the virus particles, whereas 300 kDa membranes allow some virus particles to pass into the permeate. The decrease in permeate flux for the 300 kDa ultrafiltration membrane is much greater than for the 30, 50, and 100 kDa membranes, indicating possible entrapment of virus particle in the membrane pores. The permeate flux and level of protein rejection is strongly affected by the cell culture growth medium. The results indicate that when developing a new process, it is essential that the cell culture and purification operations be developed in parallel.  相似文献   

10.
Simultaneous isolation of two platelet membrane subfractions was achieved by centrifugation on 40 % sucrose from a 100.000g crude membrane fraction. Characterization of both types of membranes was carried out by different biochemical and immunological markers. Using a surface label, 3H Concanavaline A (3HCon A), a marker enzyme, phosphodiesterase, and lipid analysis, one of the fraction has been identified as external or plasma membranes, the other consists of intracellular membranes. Further two specific antibodies directed against external membrane antigens (LeKa and LgG L) react almost exclusively with the external membranes. Finally both kinds of membranes were able to uptake calcium but the affinity for this cation was higher for the internal than for the external membranes. This suggests that both membranes are implicated in the regulation of the cytoplasmic calcium concentration and that the internal membranes (dense tubular system) play the major part in this regulation.  相似文献   

11.
A method of immobilizing enzymes from Pseudomonas sp. that decompose phenol on polymeric ultrafiltration membranes is described. Transport-separation properties of neutral and enzymic membranes have been compared and the optimal ultrafiltration process parameters of a model phenol solution have been determined. The immobilized enzyme system was applied to the biodegradation of phenol in coke wastewaters.  相似文献   

12.
Ultrafiltration of raw sewage was performed using multiple enzymes immobilized on non-cellulosic, ultrafiltration membranes. An increase of 12% in the permeate flux rate at quasi-steady state was observed due to the action of the immobilized enzymes. Enzymes were immobilized by physical sorption to minimize the loss of ultrafiltration capability of the membrane, due to the immobilization process. A mathematical model based on diffusive transport and enzymatic action is presented. A standard Marquardt algorithm and a fourth-order Runge-Kutta integration routine were used for estimation of the non-linear parameters in the model. A comparison of data presented here with the data reported earlier on the ultrafiltration of NFDM (non-fat dry milk), showed that the enzyme-membrane has a longer half-life in the case of NFDM than for raw sewage. Furthermore, the first-order enzyme decay rate is much faster in the multiple enzyme system used in raw sewage filtration than in the single enzyme system used in the ultrafiltration of NFDM.  相似文献   

13.
Although several recent studies have demonstrated the importance of electrostatic interactions in ultrafiltration, there have been few quantitative studies of the effects of membrane charge density on protein transport and membrane hydraulic permeability. Data were obtained using a series of charge-modified cellulose membranes, with the surface charge density controlled by varying the extent of addition of a quaternary amine functionality. The membrane charge was evaluated from streaming potential measurements. Protein transmission decreased by a factor of 100 as the membrane zeta potential increased from 0.3 to 6.6 mV. The protein sieving data were in good agreement with a partitioning model accounting for electrostatic effects, while the hydraulic permeability data were consistent with a flow model accounting for the effects of counter-electroosmosis. The results provide the first quantitative analysis of the effects of membrane charge density on the performance of ultrafiltration membranes.  相似文献   

14.
From striated (m. pectoralis and myocardium) and smooth (myometrium) muscle tissues of hen, by means of differential centrifugation with Ca-oxalate loading, membrane preparations were obtained with high activity of Mg(2+)-ATPase, i.e. a marker enzyme of tubular membranes of T-system of skeletal muscles. Some properties (pH and temperature optima) of this enzyme were investigated and compared to those of Ca(2+)-ATPase from membranes of the sarcoplasmic reticulum. It was shown that in all the investigated muscles, Mg(2+)-ATPase is associated with membrane fraction which in its density corresponds to tubular membranes of T-system. Activation of this enzyme is characterized by similar optimal levels of pH (7.2) and temperature (25 degrees C). The activity of Ca(2+)-ATPase in the membranes of the sarcoplasmic reticulum, in contrast to that of Mg(2+)-ATPase, is observed in more narrow bands of pH and temperature, exhibiting tissue specificity. The data obtained, indicating a possibility of chromatographic separation of these enzymes, confirm their biochemical individuality.  相似文献   

15.
Strains of Escherichia coli amplifying the intrinsic membrane enzyme fumarate reductase accommodate the overproduced enzyme by increasing the amount of membrane material, in the form of intracellular tubular structures. These tubules have been observed in strains harbouring multicopy frd plasmids and in ampicillin hyper-resistant strains. A procedure has been developed for isolation of tubules nearly free of cytoplasmic membrane. Using protein A-gold labelling and optical diffraction of electron micrographs, a model for tubule structure is proposed. The tubules have a lower lipid/protein ratio than the cytoplasmic membrane, with the enzyme accounting for greater than 90% of the protein in the tubules. Both cytoplasmic membranes and tubules from amplified strains are enriched in cardiolipin and have a more fluid fatty acid composition than wild-type strains. Mutants defective in cardiolipin synthesis produce tubules in response to excess fumarate reductase, but these tubules have an altered appearance, indicating that lipid-protein interactions may be important for tubule assembly.  相似文献   

16.
Ultrafiltration is used to remove small impurities from a variety of processing streams. However, the clearance of small charged impurities may be inadequate due to electrostatic exclusion by the charged ultrafiltration membranes, an effect that has been largely unappreciated. Ultrafiltration experiments were performed to evaluate the transmission of several model impurities with different electrical charge through ultrafiltration membranes having different surface charge characteristics. Highly charged impurities are strongly rejected by charged cellulose and polyethersulfone membranes even though these solutes are much smaller than the membrane pore size. These effects could be eliminated by using high ionic strength solutions to shield the electrostatic interactions. The sieving data are in good agreement with model calculations based on the partitioning of charged spheres into charged cylindrical pores. Guidelines are developed for estimating conditions needed to obtain effective removal of small charged impurities through charged ultrafiltration membranes.  相似文献   

17.
The ultrafiltration method of Paulus has been used to study the binding of aspartate and ITP to the catalytic subunit of aspartate transcarbamylase. Markedly different estimates of dissociation constants and of the number of moles of ligand bound per mole of enzyme have been obtained using different batches of UM 10 Diaflo membranes. Estimates derived using Visking membranes are presented for comparison.For both an amino acid and a nucleotide invalid results have been obtained using UM 10 Diaflo membranes in conjunction with this enzyme. The importance of excluding artifacts in any system studied by this method is emphasized.  相似文献   

18.
The terminal electron transfer enzyme fumarate reductase has been shown to be composed of a membrane-extrinsic catalytic dimer of 69- and 27-kilodalton (kd) subunits and a membrane-intrinsic anchor portion of 15- and 13-kd subunits. We prepared inverted membrane vesicles from a strain carrying the frd operon on a multicopy plasmid. When grown anaerobically on fumarate-containing medium, the membranes of this strain are highly enriched in fumarate reductase. When negatively stained preparations of these vesicles were examined with an electron microscope, they appeared to be covered with knob-like structures about 4 nm in diameter attached to the membrane by short stalks. Treatment of the membranes with chymotrypsin destroyed the 69-kd subunit, leaving the 27-, 15-, and 13-kd subunits bound to the membrane; these membranes appeared to retain remnants of the structure. Treatment of the membranes with 6 M urea removed the 69- and 27-kd subunits, leaving the anchor polypeptides intact. These vesicles appeared smooth and structureless. A functional four-subunit enzyme and the knob-like structure could be reconstituted by the addition of soluble catalytic subunits to the urea-stripped membranes. In addition to the vesicular structures, we observed unusual tubular structures which were covered with a helical array of fumarate reductase knobs.  相似文献   

19.
Cleaning of an inorganic ultrafiltration membrane has been quantified through hydraulic, physicochemical, and spectroscopic (infrared and x-photoelectron spectroscopy) analyses. An efficient cleaning sequence of nitric acid followed by sodium hypochlorite has been proposed for cleaning of defatted whey protein concentrate and milk ultrafiltration membranes. The influence of reversed sequence and time reduction are discussed together with the action of both cleaning chemicals. In spite of residual fouling left after every cleaning sequence studied, hydraulic cleanliness of the membrane was achieved, particularly after the standard procedure.  相似文献   

20.
Lactic acid production with cell recycling on an ultrafiltration tubular membrane reactor was studied; higher lactic acid concentrations as well as productivities were obtained under long-term fermentations compared with other high cell density systems. Different operational conditions, namely dilution rates and start-up modes, were assessed. Performances were very different at the three different dilution rates tested (D = 0.20 h(-1), D = 0.40 h(-1), or D = 0.58 h(-1)). The different behaviours are discussed and factors responsible for them are presented. The best way to operate for lactic acid production is chosen, the dilution rate of D = 0.40 h(-1) being the one providing the best overall performance. On the other hand, results show that of the two start-up modes tested, continuous start (membrane open) permits higher permeabilities throughout the operational runs than batch start (membrane closed). Operational stability was found to be directly associated with membranes that work at "steady state," the membrane permeability being kept around 15 L/m(2) h. Optimized cell bleed can improve time of operation if such membrane permeability can be maintained for a longer time. A comparison of results with those obtained in other lactic acid production systems is presented; such comparison shows that this tubular ultrafiltration membrane cell recycle reactor presents three important advantages: (1) concomitant lactic acid concentrations and productivities; (2) long periods of operation at reasonable permeabilities; and (3) good mechanical stability permitting the use of steam sterilization. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号