首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than 100 different mutations in Cu,Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (fALS). Pathogenic mutations facilitate fibrillar aggregation of SOD1, upon which significant structural changes of SOD1 have been assumed; in general, however, a structure of protein aggregate remains obscure. Here, we have identified a protease-resistant core in wild-type as well as fALS-causing mutant SOD1 aggregates. Three different regions within an SOD1 sequence are found as building blocks for the formation of an aggregate core, and fALS-causing mutations modulate interactions among these three regions to form a distinct core, namely SOD1 aggregates exhibit mutation-dependent structural polymorphism, which further regulates biochemical properties of aggregates such as solubility. Based upon these results, we propose a new pathomechanism of fALS in which mutation-dependent structural polymorphism of SOD1 aggregates can affect disease phenotypes.  相似文献   

2.
Calcineurin is a serine/threonine phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion of the existence of a redox regulation of this enzyme, which might be relevant for neurodegenerative processes, where an imbalance between generation and removal of reactive oxygen species could occur. In a recent work, we have observed that calcineurin activity is depressed in two models for familial amyotrophic lateral sclerosis (FALS) associated with mutations of the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1), namely in neuroblastoma cells expressing either SOD1 mutant G93A or mutant H46R and in brain areas from G93A transgenic mice. In this work we report that while wild-type SOD1 has a protective effect, calcineurin is oxidatively inactivated by mutant SOD1s in vitro; this inactivation is mediated by reactive oxygen species and can be reverted by addition of reducing agents. Furthermore, we show that calcineurin is sensitive to oxidation only when it is in an 'open', calcium-activated conformation, and that G93A-SOD1 must have its redox-active copper site available to substrates in order to exert its pro-oxidant properties on calcineurin. These findings demonstrate that both wild-type and mutant SOD1s can interfere directly with calcineurin activity and further support the possibility of a relevant role for calcineurin-regulated biochemical pathways in the pathogenesis of FALS.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective death of motor neurons. Approximately 10% of ALS cases are familial (fALS) and about 25% of fALS patients inherit autosomal dominant mutations in the gene encoding copper-zinc superoxide dismutase (SOD1). Over 90 different SOD1 mutations have been identified in fALS patients. It has been established that the ALS-linked SOD1 mutations provoke a new toxic function, the nature of which remains unclear. In vitro studies using various biophysical techniques have demonstrated that the SOD1 mutants share a reduced conformational stability. However, conformational alterations of the ALS mutants have not been directly demonstrated in vivo. We employed an SOD1-GFP fusion protein system in this study to monitor the intracellular protein conformation. We demonstrate that the ALS-linked SOD1 mutants adopt different conformations from the wild-type (WT) protein in living cells. Moreover, the conformational alterations of mutant SOD1 render the mutants susceptible to the formation of high-molecular-weight complexes prior to the appearance of detergent-resistant aggregates. Finally, we show that the motor neuron-like cells expressing mutant SOD1 are more susceptible to H2O2 induced cell death compared to the cells expressing WT SOD1. This study provides direct evidence of in vivo conformational differences between WT and mutant SOD1. In addition, the SOD1-GFP system can be exploited in future studies to investigate how conformational alterations of mutant SOD1 lead to protein aggregation and to study the potential toxicity of such aggregates in familial ALS.  相似文献   

4.
SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization   总被引:1,自引:0,他引:1  
There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with familial inheritance (fALS) in 5% to 10% of cases; 25% of those are caused by mutations in the superoxide dismutase 1 (SOD1) protein. More than 100 mutations in the SOD1 gene have been associated with fALS, altering the geometry of the active site, protein folding and the interaction between monomers. We performed a functional analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in 124 fALS SOD1 mutants. Eleven different algorithms were used to estimate the functional impact of the replacement of one amino acid on protein structure: SNPs&GO, PolyPhen-2, SNAP, PMUT, Sift, PhD-SNP, nsSNPAnalyzer, TANGO, WALTZ, LIMBO and FoldX. For the structural analysis, theoretical models of 124 SNPs of SOD1 were created by comparative modeling using the MHOLline workflow, which includes Modeller and Procheck. Models were aligned with the native protein by the TM-align algorithm. A human-curated database was developed using the server side include in Java, JMOL. The results of this functional analysis indicate that the majority of the 124 natural mutants are harmful to the protein structure and thus corroborate the correlation between the reported mutations and fALS. In the structural analysis, all models showed conformational changes when compared to wild-type SOD1, and the degree of structural alignment varied between them. The SOD1 database converge structural and functional analyses of SOD1; it is a vast resource for the molecular analysis of amyotrophic lateral sclerosis, which allows the user to expand his knowledge on the molecular basis of the disease. The SOD1 database is available at http://bioinfogroup.com/database.  相似文献   

6.
7.
The existence of a link between some cases of familial amyotrophic lateral sclerosis (FALS) and copper-zinc superoxide dismutase (CuZnSOD) has been understood for almost a decade. However, beyond the fact that mutations in CuZnSOD cause FALS by a toxic gain of function, the mechanism whereby specific mutations in the protein structure result in development of the disease has remained almost a complete mystery to date. We have undertaken a critical survey of in vitro characteristics of over 30 of the 90 different CuZnSOD mutant proteins that are known to cause FALS in order to determine the differences that exist between mutant and wild-type properties. As-isolated metal content analysis, SOD activity assays, and thermal stability determinations of a significant fraction of the mutants show that the FALS mutant SOD proteins can be classified distinctly into one of two groups. Members of the first group, termed wild-type-like, have physical properties and enzymatic activities that are strikingly similar to those of wild-type CuZnSOD. The second group, however, show aberrant metal content in the as-isolated forms, compromised SOD activities, and unusual DSC thermoscans. All mutations in the members of this second group occur in or near the metal binding sites of the protein and thus they are termed metal binding region mutants. We have also compared the relative rates of self-inactivation caused by reaction of the wild-type protein and several FALS-linked CuZnSOD mutants with hydrogen peroxide, as a measure of relative peroxidative activities. Results and implications of the role of CuZnSOD in FALS are discussed.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the selective loss of motor neurons. Approximately 5% to 10% of patients with ALS have a family history of the disease, and approximately 20% of familial amyotrophic lateral sclerosis (fALS) cases are associated with mutations in Cu/Zn superoxide dismutase (SOD1). In this study, we evaluated the structural and functional effects of human A4F and A4V SOD1 protein mutations. We performed an in silico analysis using prediction algorithms of nonsynonymous single-nucleotide polymorphisms (nsSNPs) associated with the fALS development. Our structural conservation results show that the mutations analyzed (A4V and A4F) were in a highly conserved region. Molecular dynamics simulations using the Linux GROMACS package revealed how these mutations affect protein structure, protein stability, and aggregation. These results suggest that there might be an effect on the SOD1 function. Understanding the molecular basis of disease provides new insights useful for rational drug design and advancing our understanding of the ALS development.  相似文献   

9.
The role of copper in the toxicity of mutant copper-dependent enzyme superoxide dismutase (SOD1) found in patients affected with the familial form of amyotrophic lateral sclerosis (fALS) is widely debated. Here we report that treatment of human neuroblastoma cells SH-SY5Y with a specific copper chelator, triethylene tetramine (Trien) induces the decrease of intracellular copper level, paralleled by decreased activity of SOD1. A comparable effect is observed in mouse NSC-34-derived cells, a motoneuronal model, transfected for the inducible expression of either wild-type or G93A mutant human SOD1, one of the mutations associated with fALS. In both cell types, the drop of SOD1 activity is not paralleled by the same extent of decrease in SOD1 protein content. This discrepancy can be explained by the occurrence of a fraction of copper-free SOD1 upon copper depletion, which is demonstrated by the partial recovery of the enzyme activity after the addition of copper sulphate to homogenates of SH-SY5Y cells. Furthermore, copper depletion produces the enrichment of the physiological mitochondrial fraction of SOD1 protein, in both cells models. However, increasing the fraction of mitochondrial, possibly copper-free, mutant human SOD1 does not further alter mitochondrial morphology in NSC-34-derived cells. Thus, copper deficiency is not a factor which may worsen mitochondrial damage, which is one of the earliest events in fALS associated with mutant SOD1.  相似文献   

10.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause approximately 20% of familial cases of amyotrophic lateral sclerosis (fALS). Accumulating evidence indicates that a gain of toxic function of mutant SOD1 proteins is the cause of the disease. It has also been shown that the ubiquitin-proteasome pathway plays a role in the clearance and toxicity of mutant SOD1. In this study, we investigated the degradation pathways of wild-type and mutant SOD1 in neuronal and nonneuronal cells. We provide here the first evidence that wild-type and mutant SOD1 are degraded by macroautophagy as well as by the proteasome. Based on experiments with inhibitors of these degradation pathways, the contribution of macroautophagy to mutant SOD1 clearance is comparable with that of the proteasome pathway. Using assays that measure cell viability and cell death, we observed that under conditions where expression of mutant SOD1 alone does not induce toxicity, macroautophagy inhibition induced mutant SOD1-mediated cell death, indicating that macroautophagy reduces the toxicity of mutant SOD1 proteins. We therefore propose that both macroautophagy and the proteasome are important for the reduction of mutant SOD1-mediated neurotoxicity in fALS. Inhibition of macroautophagy also increased SOD1 levels in detergent-soluble and -insoluble fractions, suggesting that both detergent-soluble and -insoluble SOD1 are degraded by macroautophagy. These findings may provide further insights into the mechanisms of pathogenesis of fALS.  相似文献   

11.
Mutations in the gene encoding superoxide dismutase 1 (SOD1) account for about 20% of the cases of familial amyotrophic lateral sclerosis (fALS). It is well established that mutations in SOD1, associated with fALS, heighten the propensity of the protein to misfold and aggregate. Although aggregation appears to be a factor in the toxicity of mutant SOD1s, the precise nature of this toxicity has not been elucidated. A number of other studies have now firmly established that raising the levels of wild-type (WT) human SOD1 (hSOD1) proteins can in some manner augment the toxicity of mutant hSOD1 proteins. However, a recent study demonstrated that raising the levels of WT-hSOD1 did not affect disease in mice that harbor a mouse Sod1 gene (mSod1) encoding a well characterized fALS mutation (G86R). In the present study, we sought a potential explanation for the differing effects with WT-hSOD1 on the toxicity of mutant hSOD1 versus mutant mSod1. In the cell culture models used here, we observe poor interactions between WT-hSOD1 and misfolded G86R-mSod1, possibly explaining why over-expression of WT-hSOD1 does not synergize with mutant mSod1 to accelerate the course of the disease in mice.  相似文献   

12.
Fourteen years after the discovery that mutations in Cu, Zn superoxide dismutase (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS), the mechanism by which mutant SOD1 exerts toxicity remains unknown. The two principle hypotheses are (a) oxidative damage stemming from aberrant SOD1 redox chemistry, and (b) misfolding of the mutant protein. Here we review the structure and function of wild-type SOD1, as well as the changes to the structure and function in mutant SOD1. The relative merits of the two hypotheses are compared and a common unifying principle is outlined. Lastly, the potential for therapies targeting SOD1 misfolding is discussed.  相似文献   

13.
The most prominent form of familial amyotrophic lateral sclerosis (fALS, Lou Gehrig's Disease) is caused by mutations of Cu-Zn superoxide dismutase 1 (SOD1). SOD1 maintains antioxidant activity under fALS causing mutations, suggesting that the mutations introduce a new, toxic, function. There are 100+ such known mutations that are chemically diverse and spatially distributed across the structure. The common phenotype leads us to propose an allosteric regulatory mechanism hypothesis: SOD1 mutants alter the correlated dynamics of the structure and differentially signal across an inherent allosteric network, thereby driving the disease mechanism at varying rates of efficiency. Two recently developed computational methods for identifying allosteric control sites are applied to the wild type crystal structure, 4 fALS mutant crystal structures, 20 computationally generated fALS mutants and 1 computationally generated non-fALS mutant. The ensemble of mutant structures is used to generate an ensemble of dynamics, from which two allosteric control networks are identified. One network is connected to the catalytic site and thus may be involved in the natural antioxidant function. The second allosteric control network has a locus bordering the dimer interface and thus may serve as a mechanism to modulate dimer stability. Though the toxic function of mutated SOD1 is unknown and likely due to several contributing factors, this study explains how diverse mutations give rise to a common function. This new paradigm for allostery controlled function has broad implications across allosteric systems and may lead to the identification of the key chemical activity of SOD1-linked ALS.  相似文献   

14.
ALS (amyotrophic lateral sclerosis) is a fatal neurodegenerative disease attributable to the death of motor neurons. Associated with ALS are mutations in the genes encoding SOD1 (superoxide dismutase 1), FUS (fused in Sarcoma) protein and TDP-43 (TAR DNA-binding protein-43) each of which leads to aggregation of the respective protein. For example, the ALS-associated mutations in the hSOD1 (human SOD1) gene typically destabilize the native SOD homodimer, leading to misfolding, aggregation and degradation of SOD1. The ALS-associated pathology is not a consequence of the functional inactivation of SOD1 itself, but is rather due to a toxic gain-of-function triggered by mutant SOD1. Recently, the molecular basis of a number of human neurodegenerative diseases resulting from protein misfolding and aggregation, including fALS (familial ALS), was probed by using the baker's yeast, Saccharomyces cerevisiae, as a highly tractable model. Such studies have, for example, identified novel mutant SOD1-specific interactions and demonstrated that mutant SOD1 disrupts mitochondrial homoeostasis. Features of ALS associated with TDP-43 aggregation have also been recapitulated in S. cerevisiae including the identification of modulators of the toxicity of TDP-43. In this paper, we review recent studies of ALS pathogenesis using S. cerevisiae as a model organism and summarize the potential mechanisms involved in ALS progression.  相似文献   

15.
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.  相似文献   

17.
Differential scanning calorimetry was used to measure changes in thermodynamic stability and aggregation for glycine 93 mutants of human copper, zinc-superoxide dismutase (SOD). Glycine 93 is a conserved residue at position i + 3 of a tight turn and has been found to be a mutational hot spot in familial amyotrophic lateral sclerosis (fALS). The fALS-associated mutations, G93A, G93S, G93R, G93D, and G93V, were made in a pseudo wild-type background containing no free cysteines, which prevented the formation of aberrant disulfide bonds upon thermal unfolding, and enabled quantitative thermodynamic analysis of the effects of the mutations. Thermal unfolding was highly reversible for all the SODs in both the fully metallated (holo) and metal-free (apo) forms. The data for all the holo-SODs and for the apo-pseudo-wild-type SOD were well fit by a 2-state unfolding model for native dimer (N2) to two unfolded monomers (2U), N2 <--> 2U. The holo- and apo-forms of the mutants are significantly destabilized (by 1.5-3.5 kcal mol(-1) monomer) relative to the corresponding forms of pseudo wild-type, with the relative stabilities being correlated with statistical preferences for amino acids in this structural context. Although van't Hoff (DeltaHvH) to calorimetric (DeltaHcal) enthalpy ratios are close to unity for all the holo-SODs and for apo-pseudo-wild-type, consistent with a 2-state transition, DeltaHvH is considerably larger than DeltaHcal for all the apo-mutants. This suggests that the mutations cause apo-SOD to have an increased propensity to misfold or aggregate, which may be linked to increased toxic mutant SOD aggregation in fALS.  相似文献   

18.
All mutations in the human gene for CuZn superoxide dismutase (CuZnSOD) reported to date are associated with the disease amyotrophic lateral sclerosis (ALS). These mutations, mostly of a familial nature (ALS 1, MIM 105400), span all of the coding region of this enzyme except for a highly conserved centrally located domain that includes all of exon III. We describe the identification and characterization of two mutations in this region, both found in mice. One mutation, a glutamate to lysine amino acid substitution was found in position 77 (E77K) of the strain SOD1/Ei distributed by the Jackson Laboratory. The other mutation, a lysine to glutamate substitution at position 70 (K70E) of a human transgene, was discovered in mouse line TgHS/SF-155. Enzyme activity measurements and heterodimer analysis of the CuZn SOD variant in SOD1/Ei suggest a mild loss of activity, which differs from the enzyme activity losses detected in patients with autosomal dominant ALS 1. Similarly, the presence of the mutant transgene in TgHS/SF 155 does not produce any phenotypic manifestations.  相似文献   

19.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.  相似文献   

20.
Over 90 individual mutations in SOD1 are known to cause familial amyotrophic lateral sclerosis (FALS). It is widely accepted that these mutations exert their toxic effects by a gain of function mechanism, but the nature of these toxic effects is as yet unknown. It has been proposed by several laboratories that reactions of FALS-mutant CuZnSOD are the source of elevated oxidative stress in CuZnSOD-linked FALS. It has also been proposed that aggregates of CuZnSOD are somehow involved in the disease. The hypothesis that aggregates of CuZnSOD cause ALS is particularly attractive because protein aggregates are frequently associated with other neurodegenerative diseases. Recent evidence increasingly suggests that protein aggregates containing CuZnSOD protein play a role in CuZnSOD-linked ALS, but it is not yet know why the aggregates form nor if the CuZnSOD proteins in the aggregates are cleaved, oxidized, demetallated, or otherwise covalently modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号