首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The free energy of engulfment of four bacterial species by human granulocytes is calculated from contact angle data as a function of the surface tension γLV of the suspending liquid. The resulting curves predict that at low liquid surface tensions γLV, the phagocytic ingestion increases with decreasing hydrophobicity of the bacteria while at high surface tensions γLV, it increases with increasing hydrophobicity. Furthermore, these curves reach a minimum at values of γLV equal to the surface tension γLV of the bacteria. The experimental results support these predictions. Thus, the determination of the surface tension of the suspending medium at which phagocytic ingestion becomes minimum represents a novel technique to establish the surface tension of ingested particles, such as bacteria. The results obtained in this fashion for the four bacterial species are in good agreement with those obtained from contact angles, as well as those derived from bacterial adhesion experiments.  相似文献   

2.
The influence of cell surface hydrophobicity and electrostatic charge of bacteria on grazing rates of three common species of interception-feeding nanoflagellates was examined. The hydrophobicity of bacteria isolated from freshwater plankton was assessed by using two different methods (bacterial adhesion to hydrocarbon and hydrophobic interaction chromatography). The electrostatic charge of the cell surface (measured as zeta potential) was analyzed by microelectrophoresis. Bacterial ingestion rates were determined by enumerating bacteria in food vacuoles by immunofluorescence labelling via strain-specific antibodies. Feeding rates varied about twofold for each flagellate species but showed no significant dependence on prey hydrophobicity or surface charge. Further evidence was provided by an experiment involving flagellate grazing on complex bacterial communities in a two-stage continuous culture system. The hydrophobicity values of bacteria that survived protozoan grazing were variable, but the bacteria did not tend to become more hydrophilic. We concluded that variability in bacterial cell hydrophobicity and variability in surface charge do not severely affect uptake rates of suspended bacteria or food selection by interception-feeding flagellates.  相似文献   

3.
The influence of cell surface hydrophobicity and electrostatic charge of bacteria on grazing rates of three common species of interception-feeding nanoflagellates was examined. The hydrophobicity of bacteria isolated from freshwater plankton was assessed by using two different methods (bacterial adhesion to hydrocarbon and hydrophobic interaction chromatography). The electrostatic charge of the cell surface (measured as zeta potential) was analyzed by microelectrophoresis. Bacterial ingestion rates were determined by enumerating bacteria in food vacuoles by immunofluorescence labelling via strain-specific antibodies. Feeding rates varied about twofold for each flagellate species but showed no significant dependence on prey hydrophobicity or surface charge. Further evidence was provided by an experiment involving flagellate grazing on complex bacterial communities in a two-stage continuous culture system. The hydrophobicity values of bacteria that survived protozoan grazing were variable, but the bacteria did not tend to become more hydrophilic. We concluded that variability in bacterial cell hydrophobicity and variability in surface charge do not severely affect uptake rates of suspended bacteria or food selection by interception-feeding flagellates.  相似文献   

4.
Surface thermodynamics of bacterial adhesion.   总被引:37,自引:23,他引:14       下载免费PDF全文
The adhesion of five strains of bacteria, i.e., Staphylococcus aureus (strain 049), Staphylococcus epidermidis (strain 047), Escherichia coli (strains 055 and 2627), and Listeria monocytogenes, to various polymeric surfaces was studied. The design of the experimental protocol was dictated by thermodynamic considerations. From the thermodynamic model for the adhesion of small particles from a suspension onto a solid substratum, it follows that the extent of adhesion is determined by the surface properties of all three phases involved, i.e., the surface tensions of the adhering particles, of the substrate, and of the suspending liquid medium. In essence, adhesion is more extensive to hydrophilic substrata (i.e., substrata of relatively high surface tension) than to hydrophobic substrata, when the surface tension of the bacteria is larger than that of the suspending medium. When the surface tension of the suspending liquid is larger than that of the bacteria, the opposite pattern of behavior prevails. Suspensions of bacteria at a concentration of 10(8) microorganisms per ml were brought into contact with several polymeric surfaces (Teflon, polyethylene, polystyrene, and acetal and sulfonated polystyrene) for 30 min at 20 degrees C. After rinsing, the number of bacteria adhering per unit surface area was determined by image analysis. The surface tension of the suspending medium. Hanks balanced salt solution, was modified through the addition of various amounts of dimethyl sulfoxide. It was found that the number of bacteria adhering per unit surface area correlates well with the thermodynamic predictions and that these data may be used to determine the surface tension of the different bacterial species. The surface tensions of the bacteria obtained in this fashion are in excellent agreement with those obtained by other methods.  相似文献   

5.
Bacterial cell surface hydrophobicity is one of the most important factors that influence bacterial adhesion. A new method, microsphere adhesion to cells, for measuring bacterial cell surface hydrophobicity was developed. Microsphere adhesion to cells is based on microscopic enumeration of hydrophobic, fluorescent microspheres attaching to the bacterial surface. Cell surface hydrophobicity estimated by microsphere adhesion to cells correlates well with adhesion of bacteria to hydrocarbons or hydrophobic interaction chromatography for a set of hydrophilic and hydrophobic bacteria (linear correlation coefficients, R2, were 0.845 and 0.981 respectively). We also used microsphere adhesion to cells to investigate the in situ properties of individual free-living bacteria directly in activated sludge. Results showed that the majority of the bacteria were hydrophilic, indicating the importance of cell surface hydrophobicity for bacterial adhesion in sludge, and for the overall success of the wastewater treatment process.  相似文献   

6.
There is an upsurge of interest in gastro-intestinal microbiology to improve the balance between positive and negative commensals. Mucosal bacteria make closer contact with the host than luminal ones and can therefore have a stronger health impact. An in vitro adhesion assay was developed to study the mucin colonization of bacteria from the mixed microbial communities of the Simulator of the Human Intestinal Microbial Ecosystem. Adhesion capacity differed substantially between bacteria and decreased from lactobacilli over fecal coliforms, bifidobacteria, and clostridia to total anaerobes. Lactobacillus rhamnosus GG adhered most selectively. Further, intestinal water lowered adhesion compared to phosphate-buffered saline. By processing the data to an Adhesion-Related Prebiotic Index, it was found that intestinal water stimulated adherence of positive commensals. Arabinoxylans decreased the adhesion capacity matrix independently, whereas inulin had less or no influence. Measurements of bacterial surface tension, surface hydrophobicity, liquid surface tension, and viscosity showed that bacterial adhesion to mucin agar is a matter of both non-specific and specific interactions. The developed methodology can be useful for the characterization of the relevant but barely investigated mucin-associated bacterial community in health and disease (e.g., IBD) as well as for its modulation with functional foods like prebiotics.  相似文献   

7.
Stochastic analysis of bacterial adhesion onto the surface of solid substrate is presented. Bacterial adhesion is assumed to occur in two steps: (i) a reversible adhesion between bacteria and solid surface; bacteria on the surface are weakly bound during this period, followed by (ii) an irreversible surface reaction which results in a strong binding force between bacteria and the surface; bacteria are considered to be in adhered form at this stage. The stochastic representation provides both the macroscopic and fluctuating information about the transient behavior of the phenomenon under consideration.  相似文献   

8.
Summary A thermodynamic model of particle adhesion from a suspension onto a solid surface is used to predict the extent of adhesion of suspension-cultured Catharanthus roseus cells to the following polymer substrates: fluorinated ethylene-propylene (FEP), polystyrene (PS), polyethylene terephthalate (PET), sulphonated polystyrene (SPS), and glass. According to this model, the extent of adhesion is determined by the surface tensions of the plant cells, the polymer substrates, and the suspending liquid medium. Experimentally, adhesion of the washed plant cells was found to decrease with increasing substrate surface tension, following the sequence FEP>PS>PET>SPS>glass, when the surface tension of the liquid was greater than that of the plant cells, in agreement with the model. However, adhesion increased with increasing substrate surface tension when the liquid surface tension was lower than the cellular surface tension, also in agreement with the model. When the liquid and cellular tensions were equal the extent of adhesion was independent of the substrate surface tension. This also agrees with model predictions and leads to a value for the surface tension of C. roseus cells of approximately 54 ergs/cm2 which is in agreement with a value obtained from contact angle measurements on layers of cells and sedimentation volume analysis. The cellular surface tension determined by the sedimentation volume method showed a biphasic alteration during growth cycles of C. roseus cell cultures. These variations (between 55 and 58 ergs/cm2) agree with the pattern of adhesion previously described.  相似文献   

9.
The role of bacterial cell wall hydrophobicity in adhesion   总被引:25,自引:0,他引:25  
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

10.
The role of bacterial cell wall hydrophobicity in adhesion.   总被引:31,自引:18,他引:13       下载免费PDF全文
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

11.
Rapid identification of biosurfactant-producing bacterial strains was achieved by assaying cell surface hydrophobicity which had a direct correlation with biosurfactant production by Serratia marcescens, Pseudomonas aeruginosa, Bacillus pumilus, B. laterosporus, Acineto- bacter calcoaceticus, Escherichia coli and Staphylococcus aureus. These properties namely, Hydrophobic Interaction Chromatography, Salt Aggregation Test, Bacterial Adherence To Hydrocarbon and adhesion to polystyrene by Replica Plate test, provide a simple means for identifying bacteria associated with the production of biosurfactants.  相似文献   

12.
Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.  相似文献   

13.
Bacterial adhesion on biomaterial surfaces is the initial step in establishing infections and leads to the formation of biofilms. In this study, silicone was modified with different biopolymers and silanes, including: heparin, hyaluronan, and self-assembled octadecyltrichlorosilane (OTS), and fluoroalkylsilane (FAS). The aim was to provide a stable and bacteria-resistant surface by varying the degree of hydrophobicity and the surface structure. The adhesion of Escherichia coli (JM 109) on different modified silicone surfaces was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mica, an ideal hydrophilic and smooth surface, was employed as a control specimen to study the effect of hydrophobicity and surfaces roughness on bacterial adhesion. AFM probes were coated with E. coli and the force measurements between the bacteria-immobilized tip and various materials surfaces were obtained while approaching to and retracting from the surfaces. A short-range repulsive force was observed between the FAS coated silicone and bacteria. The pull-off force of bacteria to FAS was the smallest among coated surfaces. On the other hand, heparin exhibited a long-range attractive force during approach and required a higher pull-off force in retraction. Both AFM and SEM results indicated that FAS reduced bacterial adhesion whereas heparin enhanced the adhesion compared to pure silicone. The work demonstrates that hydrophobicity cannot be used as a criterion to predict bacterial adhesion. Rather, both the native properties of the individual strain of bacteria and the specific functional structure of the surfaces determine the strength of force interaction, and thus the extent of adhesion.  相似文献   

14.
Prevention of bacterial adhesion   总被引:1,自引:0,他引:1  
Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation. As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future.  相似文献   

15.
The first step of the pathogenesis of many infectious diseases is the colonisation of the mucosal surface by the pathogen. Bacterial colonisation of the mucosal surface is promoted by adherence to high molecular weight mucus glycoproteins. We examined the effect of carp intestinal mucus glycoproteins on the adhesion of different bacteria. The bacteria used were 3 strains of Aeromonas hydrophila, and A. salmonicida, Edwardsiella tarda and Yersinia ruckeri. All bacteria adhered to mucus, but at varying intensities. All tested bacteria adhered best to molecules of 670 to 2000 kDa in size, less to molecules larger than 2000 kDa and weakest to molecules of 30 to 670 kDa. In general, bacteria that showed a stronger adhesion to intestinal mucus were cytotoxic to cells in vitro, and bacteria that showed a weaker adhesion to intestinal mucus did not lead to alterations of monolayers of EPC-cells. Furthermore, the involvement of glycan side chains of the glycoproteins for bacterial adhesion was analysed for one A. hydrophila strain. After cleavage of terminal sugar residues by treatment of mucus glycoproteins with different glycosidases, binding of bacteria was modulated. When mannose was cleaved off, adhesion significantly increased. Blocking of glycan receptors by incubation of bacteria with different oligosaccharides had no clear effect on bacterial binding to mucus glycoproteins. Our results suggest that bacteria interact with carbohydrate side chains of mucus glycoproteins, and that the carbohydrates of the core region are involved in bacterial binding.  相似文献   

16.
The relationship between physiochemical surface parameters and adhesion of bacterial cells to negatively charged polystyrene was studied. Cell surface hydrophobicity and electrokinetic potential were determined by contact angle measurement and electrophoresis, respectively. Both parameters influence cell adhesion. The effect of the electrokinetic potential increases with decreasing hydrophobicity. Cell surface characteristics determining adhesion are influenced by growth conditions. At high growth rates, bacterial cells tend to become more hydrophobic. This fact can be of ecological significance for controlling the spread of bacteria throughout the environment.  相似文献   

17.
The relationship between physiochemical surface parameters and adhesion of bacterial cells to negatively charged polystyrene was studied. Cell surface hydrophobicity and electrokinetic potential were determined by contact angle measurement and electrophoresis, respectively. Both parameters influence cell adhesion. The effect of the electrokinetic potential increases with decreasing hydrophobicity. Cell surface characteristics determining adhesion are influenced by growth conditions. At high growth rates, bacterial cells tend to become more hydrophobic. This fact can be of ecological significance for controlling the spread of bacteria throughout the environment.  相似文献   

18.
Summary The effect of the hydrophobicity and the electrostatic charge of bacterial cell surfaces on the initial phase of adsorption to inorganic porous supports with SiO2 or Al2O3 as the main components was investigated. The physicochemical surface properties of various Gram-positive and Gram-negative bacteria were characterized by water contact angle and zeta-potential measurements. The influence of microbial charge on adsorption was investigated by varying the ionic strength of the suspending liquid. The amount of Escherichia coli cells adsorbed to Siran and B supports increased with increasing electrolyte concentration. The effect of cell surface hydrophobicity on the extent of adsorption was demonstrated at high ionic strength (0.15 m NaCl) where charge effects were reduced. The supports applied in this study promoted the adsorption of hydrophilic bacteria. Offprint requests to: H. Ziehr  相似文献   

19.
Bacterial ingestion and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. However, only few proteins implicated in intracellular bacterial killing have been identified to date. We used Dictyostelium discoideum, a phagocytic bacterial predator, to study intracellular killing. In a random genetic screen we identified Kil2, a type V P-ATPase as an essential element for efficient intracellular killing of Klebsiella pneumoniae bacteria. Interestingly, kil2 knockout cells still killed efficiently several other species of bacteria, and did not show enhanced susceptibility to Mycobacterium marinum intracellular replication. Kil2 is present in the phagosomal membrane, and its structure suggests that it pumps cations into the phagosomal lumen. The killing defect of kil2 knockout cells was rescued by the addition of magnesium ions, suggesting that Kil2 may function as a magnesium pump. In agreement with this, kil2 mutant cells exhibited a specific defect for growth at high concentrations of magnesium. Phagosomal protease activity was lower in kil2 mutant cells than in wild-type cells, a phenotype reversed by the addition of magnesium to the medium. Kil2 may act as a magnesium pump maintaining magnesium concentration in phagosomes, thus ensuring optimal activity of phagosomal proteases and efficient killing of bacteria.  相似文献   

20.
The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号