首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Maximum xylanase production byChaetomium cellulolyticum was obtained in the culture supernatant after 30 h of growth at 37°C in basal medium containing 1% xylan at pH maintained between 6.5 and 7.5. Addition of 0.05% Tween 80 to the medium increased the enzyme production considerably. Xylanase production was found to be growth associated. The optimal conditions for enzymatic hydrolysis of xylan were found to be pH 6.0 and 50°C. During enzymatic hydrolysis, xylose, xylobiose and other xylooligosaccharides were liberated from xylan. The pH values for xylanase production and for xylan hydrolysis were closely related to the utilization of hemicelluloses of aspen wood for fungal protein production by this organism as reported in our earlier work.  相似文献   

2.
This study focuses on the isolation and characterization of bacteria from municipal waste and peat to determine those bacteria with good potential for modification and decomposition of lignocellulosic biomass for industrial application. Twenty cellulase-producing bacteria belonging to four major phyla - Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes - were found when screened on carboxymethyl cellulose-containing agar. Six isolates also exhibited activities towards filter paper as the sole carbon source in salt media, while 12 exhibited activities towards xylan when screened on xylan-containing plates. Moreover, 5 isolates survived in and increased the absorbance of 1% black liquor in salt media by an average of 2.07-fold after 21 days of incubation. Similarly, these 5 isolates increased the absorbance of 0.1% pure lignin at 280 nm in salt media, indicating modification of lignin. Additionally, the Fourier transform infrared spectroscopy analysis of 1% barley straw treated for 21 days with these 5 strains showed a preference for consumption of hemicelluloses over lignin; however, a change in lignin was observed. A Bacillus strain (55S5) and a Pseudomonas strain (AS1) displayed the greatest potential for lignocellulose decomposition due to a variety of cellulase activities, as well as xylanase activity and modification of lignin. Several of these isolates have good potential for industrial use in the degradation of lignocellulosic biomass.  相似文献   

3.
When purified xylanases from Trichoderma harzianum E58 or from a clone of Bacillus circulans were incubated with various low-yield wood pulps, little of the original enzyme activity could be detected in the filtrate at the end of the reaction. Partial bleaching of the pulps prior to enzymatic treatment generally resulted in an increased recovery of the xylanase activity. It appears that both nonspecific adsorption and soluble inhibitors may be responsible for the loss of much of the xylanase activity. However, xylanases from Aureobasidium pullulans and Schizophyllum commune were not as inhibited by the pulps, and the activity of the latter enzyme actually increased after incubation with several high-yield pulps. Although a lignin preparation from spent sulfite liquor at a concentration of 0.06 mg/mL could inhibit the xylanase activity of T. harzianum and B. circulans by 65% and 50%, respectively, xylanases from Thermoascus aurantiacus, S. commune, and A. pullulans were activated at similar lignin concentrations. At higher concentrations these latter xylanases were also inhibited. Water-soluble lignins extracted from a variety of pulps and used at a lignin concentration of 2.5 mug/mL resulted in inhibition of more than 65% of the original activity of the xylanase from T. harzianum. Kinetic studies showed that lignin from spent sulfite liquor resulted in noncompetitive inhibition of this enzyme.  相似文献   

4.
Summary Sclereids isolated from the bark of beech (Fagus sylvatica L.) were delignified and treated with 1.3% sulfuric acid or with purified enzymes, viz., avicelase, carboxymethylcellulase, xylanase as well as combinations of xylanase and avicelase. Monitoring of the degradation was performed by quantitative liquid chromatography. Sulfuric acid dissolves about 30% sugars, especially hemicelluloses after 12 hours treatment. The avicelase (cellulase) and carboxymethylcellulase treatment degraded cellulose only to a very small extent. The xylanase degraded xylan selectively from the delignified sclereids amounting to about 60% after 51 hours incubation. The combined action of xylanase and avicelase brought about a xylan degradation of about 70%. Addition of avicelase to the initially xylanase-treated material resulted in the degradation of cellulase up to 25%.Electron microscopy of the variously treated samples showed the micromorphological changes effected and gave an indication of the topochemical distribution of xylan and cellulose. Sulfuric acid treatment removed wall components from all the lamellae of the sclereid wall, showing no definite pattern. Xylanase effects an intense decrustation of wall material both at the lumen boundary as well as near to the middle lamella, whereby the pattern of degradation is irregular; the cellulose fibrils also become well exposed. The addition of avicelase to xylanase-treated sclereid holocellulose creates an increase in the degradation, which is especially localized in the lamellated wall near to the middle lamella/primary wall region and at the lumen boundary. There appears to be a total hydrolysis of both matrix and fibrillar substances, characteristically more in the lamellae with longitudinal bow-shaped fibrils. Based on these results it is concluded that there appears to be no definite differential distribution pattern of xylan in the two lamellae. The higher contrast in the lamellae with transversely oriented fibrils is interpreted as resulting from the packing density of cellulose fibrils.  相似文献   

5.
Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover.  相似文献   

6.
The accessibility of cellulase and xylanase enzymes to glucan and xylan, respectively, and its change with conversion were measured for pure Avicel glucan and poplar solids that had been pretreated by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), dilute acid, and lime. Avicel and pretreated solids were digested to various degrees by cellulase together with β-glucosidase enzymes and then cleaned of residual protein via a biological method using Protease. Glucan accessibility was determined by purified CBHI (Cel7A) adsorption at 4 °C, and 4 and 24 h hydrolysis yields were determined for solids loading containing equal amounts of glucan (1.0% w/v) and lignin (1.0% w/v), in two separate sets of experiments. Consistent with our previous study and in contrast to some in the literature, little change in glucan accessibility was observed with conversion for Avicel, but glucan and xylan accessibility for real biomass varied with the type of pretreatment. For example, AFEX pretreated solids showed a negligible change in glucan accessibility for conversion up to 90%, although xylan accessibility seemed to decline first and then remained constant. On the other hand, a substantial decline in glucan and xylan accessibility with conversion was observed for lime pretreated poplar solids, as shown by initial hydrolysis rates. Yet, an increase in CBHI adsorption with conversion for lime pretreated poplar solids suggested the opposite trend, possibly due to increased lignin exposure and/or reduced effectiveness of adsorbed enzyme.  相似文献   

7.
Xylooligosaccharides are functional foods mainly produced during the hydrolysis of xylan by physical, chemical, or enzymatic methods. In this study, production of xylobiose was investigated using oil palm empty fruit bunch fiber (OPEFB) as a source material, by chemical and enzymatic methods. Xylanase-specific xylan hydrolysis followed by xylobiose production was observed. Among different xylanases, xylanase from FXY-1 released maximum xylobiose from pretreated OPEFB fiber, and this fungal strain was identified as Aspergillus terreus and subsequently deposited under the accession Number MTCC- 8661. The imperative role of lignin on xylooligosaccharides enzymatic synthesis was exemplified with the notice of xylobiose production only with delignified material. A maximum 262 mg of xylobiose was produced from 1.0 g of pretreated OPEFB fiber using FXY-1 xylanase (6,200 U/ml) at pH 6.0 and 45° C. At optimized environment, the yield of xylobiose was improved to 78.67 g/100 g (based on xylan in the pretreated OPEFB fiber).  相似文献   

8.
Accellerase 1000 cellulase, Spezyme CP cellulase, β-glucosidase, Multifect xylanase, and beta-xylosidase were evaluated for hydrolysis of pure cellulose, pure xylan, and switchgrass solids from leading pretreatments of dilute sulfuric acid, sulfur dioxide, liquid hot water, lime, soaking in aqueous ammonia, and ammonia fiber expansion. Distinctive sugar release patterns were observed from Avicel, phosphoric acid swollen cellulose (PASC), xylan, and pretreated switchgrass solids, with accumulation of significant amounts of xylooligomers during xylan hydrolysis. The strong inhibition of cellulose hydrolysis by xylooligomers could be partially attributed to the negative impact of xylooligomers on cellulase adsorption. The digestibility of pretreated switchgrass varied with pretreatment but could not be consistently correlated to xylan, lignin, or acetyl removal. Initial hydrolysis rates did correlate well with cellulase adsorption capacities for all pretreatments except lime, but more investigation is needed to relate this behavior to physical and compositional properties of pretreated switchgrass.  相似文献   

9.
Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching beta-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low apparent molecular weight of 5,500 by native gel filtration, but its denatured molecular weight was 22,600 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had an isoelectric point of 9.5. The pH and temperature optima for hydrolysis of arabinoxylan were 6.5 to 7.0 and 60 degrees C, respectively, and more than 75% of the optimum enzyme activity was retained at pH 8.0. The xylanase had a K(m) of 7.9 mg/ml and an apparent V(max) of 305 mumol . min . mg of protein. The hydrolysis rate was linear for xylan concentrations of less than 4 mg/ml, but significant inhibition was observed at xylan concentrations of more than 10 mg/ml. The predominant products of arabinoxylan hydrolysis included arabinose, xylobiose, and xylotriose.  相似文献   

10.
Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and β-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 °C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of β-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of β-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of β-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of β-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.  相似文献   

11.
The effects of cultivation pH and agitation rate on growth and extracellular xylanase production by Aspergillus oryzae NRRL 3485 were investigated in bioreactor cultures using spent sulphite liquor (SSL) and oats spelts xylan as respective carbon substrates. Xylanase production by this fungus was greatly affected by the culture pH, with pH 7.5 resulting in a high extracellular xylanase activity in the SSL-based medium as well as in a complex medium with xylan as carbon substrate. This effect, therefore, was not solely due to growth inhibition at the lower pH values by the acetic acid in the SSL. The xylanase activity in the SSL medium peaked at 199 U ml(-1) at pH 7.5 with a corresponding maximum specific growth rate of 0.39 h(-1). By contrast, the maximum extracellular beta-xylosidase activity pf 0.36 U ml(-1) was recorded at pH 4.0. Three low molecular weight xylanase isozymes were secreted at all pH values within the range of pH 4-8, whereas cellulase activity on both carbon substrates was negligible. Impeller tip velocities within the range of 1.56-3.12 m s(-1) had no marked effect, either on the xylanase activity, or on the maximum volumetric rate of xylanase production. These results also demonstrated that SSL constituted a suitable carbon feedstock as well as inducer for xylanase production in aerobic submerged culture by this strain of A. oryzae.  相似文献   

12.
A growth medium was developed for maximal production in batch culture of extracellular xylanase and beta-xylosidase by Aspergillus awamori CMI 142717 and a mutant (AANTG 43) derived from the wild-type strain. The optimum pH for the production of xylanase and beta-xylosidase was 4.0. The best temperature of xylanase production was 30 degrees C; 35 degrees C was optimal for beta-xylosidase. Protease production was never completely suppressed under any of the conditions tested. However, protease titre was 3.5-fold less than the control in medium in which proteose peptone and yeast extract were omitted: the level of xylanase was not affected (8.6 U mL(-1)) but beta-xylosidase titre was increased 4.7-fold to 1.5 U mL(-1). When corn steep liquor was used as the sole nitrogen source, xylanse and beta-xylosidase titres were further increased by 1.5- and 1.9-fold, respectively. Of the carbon sources investigated, ball-milled oat straw or oat spelt xylan produced the highest titres of xylanse and beta-xylosidase. None of the soluble carbon sources investigated produced the high titres of xylanase or beta-xylosidase induced by either oat straw for xylanse and beta-xylosidase was 2% and the optimum spore inoculum was between 10(6) and 10(7) spores/mL(-1) final concentration. The level of xylanse activity obtained in the culture filtrates of the mutant was a remarkable 820 U mL(-1) when the reducing sugar released was measured by the dinitrosalicylic acid method. This enzyme titre would appear to be the highest reported so far. The xylanases system contained the correct balance of enzymes to effect extensive hydrolysis of oat spelt xylan. The protease titre was very low.  相似文献   

13.
13C-n.m.r. study of C hordein.   总被引:2,自引:1,他引:1       下载免费PDF全文
Insoluble xylan was prepared from ground birch (Betula pubescens) pulp by alkali extraction and precipitation with ethanol. The only sugar detected after acid hydrolysis of the preparation was xylose. The insoluble xylan was used as substrate in a nephelometric assay to determine the xylanase (EC 3.2.1.8, 1,4-beta-D-xylan xylanohydrolase and EC 3.2.1.37, 1,4-beta-D-xylan xylohydrolase) activities of Aspergillus and Trichoderma enzymes. The nephelometric method is reliable in evaluating xylanase hydrolysis of insoluble xylan.  相似文献   

14.
Relationships between activities of xylanases and xylan structures   总被引:1,自引:0,他引:1  
Structures of five water-soluble xylans have been determined. Four purified xylanase enzymes have been studied for the hydrolysis of the xylans. Different xylanases have different activities against various xylan structures. The key factors that influence the rate of xylan hydrolysis are chain length and degree of substitution. Two family 11 xylanases, Orpinomyces pc2 xylanase and Trichoderma longibrachiatum xylanase, can rapidly hydrolyze xylans that have a chain length greater than 8 xylose residues, and their hydrolytic rates are not sensitive to substituents on the xylan backbone. A family 11 xylanase from Aureobasidium pullulans is most effective on xylans that have a long chain (greater than 19 xylose residues), and also is effective against substituent groups. Although Thermatoga maritima xylanase is also more active on a long xylan chain (greater than 19 xylose residues), its hydrolytic rate is greatly reduced by substituents on xylan backbones.  相似文献   

15.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Batch hydrolysis kinetics of paper birch (Betula papyrifera) xylan and its associated acetyl groups in dilute sulfuric acid have been measured for acid concentrations of between 0.04 and 0.18M and temperatures of between 100 and 170 degrees C. Only 5% of the cellulose was hydrolyzed for up to 85% xylan removal. Rate data were correlated well by a parallel reaction model based on the existence of reactive and resistant xylan portions. The resulting rate equation predicts the experimental xylan concentrations in the residue to within 10%. Hydrolysis of xylan-associated acetyl groups was found to occur at the same rate as that of xylan, except at 100 degrees C, where acetyl is released preferentially. No effect of acid concentration on the rate of acetyl removal relative to that of xylan was evident.  相似文献   

17.
Removal and modification of southern red oak hemicelluloses and lignin in a 0.05%(w/v) sulfuric acid hydrolysis were investigated. The hydrolysis profile was to raise the reaction from room temperature to 150 degrees C for in 38 min and to extend the hydrolysis at 150 degrees C for 1 h. At the end of the hydrolysis, 25.5% of red oak components were dissolved, of which 58% was xylose and 17% lignin. As the hydrolysis proceeded from room temperature to 150 degrees C, a part of red oak xylan was removed to yield an oligomer fraction having maximal yield and average molecular weight of 3460 at 150 degrees C. This fraction and the bulk xylan extracted during the first 30 min at 150 degrees C were further degraded to give a lower molecular weight oligomer fraction, of which the yield and average molecular weight (2610) were highest at the end of the bulk removal of xylan. Red oak lignin, syringyl and guaiacyl units in particular, was increasingly removed with the progress of the hydrolysis. Lignin derivatives and a part of red oak extractives soluble in the hydrolysate were identified.  相似文献   

18.
19.
Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching β-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low apparent molecular weight of 5,500 by native gel filtration, but its denatured molecular weight was 22,600 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had an isoelectric point of 9.5. The pH and temperature optima for hydrolysis of arabinoxylan were 6.5 to 7.0 and 60°C, respectively, and more than 75% of the optimum enzyme activity was retained at pH 8.0. The xylanase had a Km of 7.9 mg/ml and an apparent Vmax of 305 μmol · min-1 · mg of protein-1. The hydrolysis rate was linear for xylan concentrations of less than 4 mg/ml, but significant inhibition was observed at xylan concentrations of more than 10 mg/ml. The predominant products of arabinoxylan hydrolysis included arabinose, xylobiose, and xylotriose.  相似文献   

20.
Two distinct xylanase genes (designated xynA and xynB) were subcloned in pUC13 from non-homologous restriction fragments of Ruminococcus flavefaciens 17 DNA originally isolated in lambda EMBL3. The products of the two genes showed similar pH optima for hydrolysis of oat spelt xylan (around 5.5) and had little or no activity against carboxymethylcellulose. Trace activities against p-nitrophenyl (pNP) cellobioside and pNP-xyloside were detected in clones containing xynA, but not in one harbouring xynB. The xylanase associated with clones carrying xynA produced mainly xylobiose and xylose from xylan and did not give hydrolysis of xylobiose, while that encoded by xynB produced mainly xylobiose and higher xylo-oligosaccharides from xylan. There was evidence of increased expression, at the RNA level, of these two genes, and of another cloned region encoding multiple activities including xylanase, in R. flavefaciens 17 grown with xylan, as compared with cellobiose, as energy source. Total cell-associated xylanase and beta-xylosidase activities, and supernatant xylanase activity, were shown to be similarly induced in xylan-grown R. flavefaciens, 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号