首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NBLRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.  相似文献   

2.
The tomato Mi-1 gene confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum eluphorbiae), and whiteflies (Bemisia tabaci and B. tabaci biotype B). Resistance to potato aphid is developmentally regulated and is not associated with induction of a hypersensitive response. The NahG transgene that eliminates endogenous salicylic acid (SA) was used to test the role of the SA signaling pathway in the resistance mediated by Mi-1 to potato aphids. Aphids survived longer on NahG tomato plants than on wild type. However, aphid reproduction was not affected on NahG tomato. Aphid resistance in Mi-1 NahG plants was completely abolished and the phenotype was successfully rescued by application of BTH (benzo(1,2,3)-thiaiazole-7-carbothioic acid S-methyl ester), indicating that the SA signaling pathway is an important component of Mi-1-mediated aphid resistance. Using virus-induced gene silencing, one or more mitogen-activated protein kinase (MAPK) cascades required for Mi-1-mediated aphid resistance were identified. Silencing plants for MAPK kinase (LeMKK2) and MAPKs (LeMPK2 and LeMPK1, or LeMPK3) resulted in attenuation of Mi-1-mediated aphid resistance. These results further demonstrate that resistance gene-mediated signaling events against piercing-sucking insects are similar to those against other plant pathogens.  相似文献   

3.
The Mi-1.2 gene in tomato confers resistance against certain clones of the potato aphid (Macrosiphum euphorbiae). This study used 2D-DIGE coupled with protein identification by MALDI-TOF-MS to compare the proteome patterns of avirulent and semivirulent potato aphids and their bacterial endosymbionts on resistant (Mi-1.2+) and susceptible (Mi-1.2−) tomato lines. Avirulent aphids had low survival on resistant plants, whereas the semivirulent clone could colonize these plants. Eighty-two protein spots showed significant quantitative differences among the four treatment groups, and of these, 48 could be assigned putative identities. Numerous structural proteins and enzymes associated with primary metabolism were more abundant in the semivirulent than in the avirulent aphid clone. Several proteins were also up-regulated in semivirulent aphids when they were transferred from susceptible to resistant plants. Nearly 25% of the differentially regulated proteins originated from aphid endosymbionts and not the aphid itself. Six were assigned to the primary endosymbiont Buchnera aphidicola, and 5 appeared to be derived from a Rickettsia-like secondary symbiont. These results indicate that symbiont expression patterns differ between aphid clones with differing levels of virulence, and are influenced by the aphids’ host plant. Potentially, symbionts may contribute to differential adaptation of aphids to host plant resistance.  相似文献   

4.
The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs.  相似文献   

5.
6.
The tomato Mi-1 gene confers resistance against root-knot nematodes (Meloidogyne spp.) and a biotype of the potato aphid (Macrosiphum euphorbiae). Four mutagenized Mi-1/Mi-1 tomato populations were generated and screened for altered root-knot nematode resistance. Four independent mutants belonging to two phenotypic classes were isolated. One mutant was chosen for further analyzes; rme1 (for resistance to Meloidogyne) exhibited levels of infection comparable with those found on susceptible controls. Molecular and genetic data confirmed that rme1 has a single recessive mutation in a locus different from Mi-1. Cross-sections through galls formed by feeding nematodes on rme1 roots were identical to sections from galls of susceptible tomato roots. In addition to nematode susceptibility, infestation of rme1 plants with the potato aphid showed that this mutation also abolished aphid resistance. To determine whether Rme1 functions in a general disease-resistance pathway, the response against Fusarium oxysporum f.sp. lycopersici race 2, mediated by the I-2 resistance gene, was studied. Both rme1 and the wild type plants were equally resistant to the fungal pathogen. These results indicate that Rme1 does not play a general role in disease resistance but may be specific for Mi-1-mediated resistance.  相似文献   

7.
8.
The Mi-1.2 resistance gene in tomato (Solanum lycopersicum) confers resistance against several species of root-knot nematodes (Meloidogyne spp.). This study examined the impact of M. javanica on the reproductive fitness of near-isogenic tomato cultivars with and without Mi-1.2 under field and greenhouse conditions. Surprisingly, neither nematode inoculation or host plant resistance impacted the yield of mature fruits in field microplots (inoculum=8,000 eggs/plant), or fruit or seed production in a follow-up greenhouse bioassay conducted with a higher inoculum level (20,000 eggs/plant). However, under heavy nematode pressure (200,000 eggs/plant), greenhouse-grown plants carrying Mi-1.2 had more than ten-fold greater fruit production than susceptible plants and nearly forty-fold greater estimated lifetime seed production, confirming prior reports of the benefits of Mi-1.2. In all cases Mi-mediated resistance significantly reduced nematode reproduction. These results indicated that tomato can utilize tolerance mechanisms to compensate for moderate levels of nematode infection, but that the Mi-1.2 resistance gene confers a dramatic fitness benefit under heavy nematode pressure. No significant cost of resistance was detected in the absence of nematode infection.  相似文献   

9.
The tomato (Solanum lycopersicum) Mi-1 gene encodes a protein with putative coiled-coil nucleotide-binding site and leucine-rich repeat motifs. Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum euphorbiae), and sweet potato whitefly (Bemisia tabaci). To identify genes required in the Mi-1-mediated resistance to nematodes and aphids, we used tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) to repress candidate genes and assay for nematode and aphid resistance. We targeted Sgt1 (suppressor of G-two allele of Skp1), Rar1 (required for Mla12 resistance), and Hsp90 (heat shock protein 90), which are known to participate early in resistance gene signaling pathways. Two Arabidopsis (Arabidopsis thaliana) Sgt1 genes exist and one has been implicated in disease resistance. Thus far the sequence of only one Sgt1 ortholog is known in tomato. To design gene-specific VIGS constructs, we cloned a second tomato Sgt1 gene, Sgt1-2. The gene-specific VIGS construct TRV-SlSgt1-1 resulted in lethality, while silencing Sgt1-2 using TRV-SlSgt1-2 did not result in lethal phenotype. Aphid and root-knot nematode assays of Sgt1-2-silenced plants indicated no role for Sgt1-2 in Mi-1-mediated resistance. A Nicotiana benthamiana Sgt1 VIGS construct silencing both Sgt1-1 and Sgt1-2 yielded live plants and identified a role for Sgt1 in Mi-1-mediated aphid resistance. Silencing of Rar1 did not affect Mi-1-mediated nematode and aphid resistance and demonstrated that Rar1 is not required for Mi-1 resistance. Silencing Hsp90-1 resulted in attenuation of Mi-1-mediated aphid and nematode resistance and indicated a role for Hsp90-1. The requirement for Sgt1 and Hsp90-1 in Mi-1-mediated resistance provides further evidence for common components in early resistance gene defense signaling against diverse pathogens and pests.  相似文献   

10.
11.
The Mi locus of tomato confers resistance to root knot nematodes. Tomato DNA spanning the locus was isolated as bacterial artificial chromosome clones, and 52 kb of contiguous DNA was sequenced. Three open reading frames were identified with similarity to cloned plant disease resistance genes. Two of them, Mi-1.1 and Mi-1.2, appear to be intact genes; the third is a pseudogene. A 4-kb mRNA hybridizing with these genes is present in tomato roots. Complementation studies using cloned copies of Mi-1.1 and Mi-1.2 indicated that Mi-1.2, but not Mi-1.1, is sufficient to confer resistance to a susceptible tomato line with the progeny of transformants segregating for resistance. The cloned gene most similar to Mi-1.2 is Prf, a tomato gene required for resistance to Pseudomonas syringae. Prf and Mi-1.2 share several structural motifs, including a nucleotide binding site and a leucine-rich repeat region, that are characteristic of a family of plant proteins, including several that are required for resistance against viruses, bacteria, fungi, and now, nematodes.  相似文献   

12.
13.
The tomato gene Mi-1 confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphid, and whitefly. Using genetic screens, we have isolated a mutant, rme1 (resistance to Meloidogyne spp.), compromised in resistance to M. javanica and potato aphid. Here, we show that the rme1 mutant is also compromised in resistance to M. incognita, M. arenaria, and whitefly. In addition, using an Agrobacterium-mediated transient assay in leaves to express constitutive gain-of-function mutant Pto(L205D), we demonstrated that the rme1 mutation is not compromised in Pto-mediated hypersensitive response. Moreover, the mutation in rme1 does not result in increased virulence of pathogenic Pseudomonas syringae or Mi-1-virulent M. incognita. Using a chimeric Mi-1 construct, Mi-DS4, which confers constitutive cell death phenotype and A. rhizogenes root transformation, we showed that the Mi-1-mediated cell death pathway is intact in this mutant. Our results indicate that Rme1 is required for Mi-1-mediated resistance and acts either at the same step in the signal transduction pathway as Mi-1 or upstream of Mi-1.  相似文献   

14.
15.
The tomato Mi gene confers resistance against root-knot nematodes and potato aphids. Chimeric constructs of the functional gene, Mi-1. 2, with a homolog, Mi-1.1, were produced, and their phenotypes were examined in Agrobacterium rhizogenes-transformed roots. Exchange of the leucine-rich repeat (LRR) region of Mi-1.1 into Mi-1.2 resulted in the loss of ability to confer nematode resistance, as did substitution of a 6-amino acid sequence from the Mi-1.1 LRR into Mi-1.2. Introduction of the Mi-1.2 LRR-encoding region into Mi-1.1 resulted in a lethal phenotype, as did substitution of the fragment encoding the N-terminal 161 amino acids of Mi-1.1 into Mi-1.2. Transient expression of the latter two chimeric constructs in Nicotiana benthamiana leaves produced localized cell death. The cell death caused by the N-terminal exchange was suppressed by coinfiltration with a construct expressing the N-terminal 161 amino acids of Mi-1.2. The phenotypes of these and other constructs indicate that the LRR region of Mi-1.2 has a role in signaling localized cell death and that the N-terminal 161 amino acids have a role in regulating this death.  相似文献   

16.
The root-knot nematode resistance gene Mi from tomato encodes a nucleotide-binding/leucine-rich repeat (NB/LRR) protein with a novel amino-terminal domain compared to related disease-resistance genes. The closely linked paralog Mi-1.1, which does not confer nematode resistance, encodes a protein 91% identical to the functional copy, Mi-1.2. The chimeric construct Mi-DS3, which encodes the 161 amino-terminal residues from Mi-1.1 fused to the remainder of Mi-1.2, induces localized necrosis when transiently expressed in Nicotiana benthamiana leaves. We produced mutant constructs that exchanged sequences encoding each of the 40 amino acid differences from the Mi-1.1 LRR region into Mi-DS3 and into Mi-1.2. For 23 of the substitutions, necrosis was lost upon transient expression of the mutated Mi-DS3 in N. benthamiana, and nematode resistance was lost when the altered Mi-1.2 was expressed in the tomato roots. One substitution, R961D, failed to give Mi-DS3-induced necrosis, but produced a dominant lethal phenotype when introduced into Mi-1.2. This gain-of-function phenotype was suppressed by co-expression with the amino-terminal region of Mi-1.1, suggesting that residue 961 is critical for negative regulation by the corresponding N-terminal region. Substitutions of Mi-1.1 residues 984-986 retained the ability to cause necrosis in Mi-DS3, but resulted in loss-of-nematode resistance in Mi-1.2, suggesting that these residues are essential for nematode recognition. None of the loss-of-function mutations in Mi-1.2 had a dominant negative phenotype. These results indicate that the Mi-1.2 LRR is involved in regulation of the transmission of the resistance response as well as in recognition of the nematode.  相似文献   

17.
Tomato aphid (Myzus persicae) is a destructive insect pest of tomato responsible for huge losses in the production as well in the vegetable industry. In the present in vitro study two protein elicitors, PeaT1 and PeBL1 were considered to study their efficacies to exhibit defense response against tomato aphid. Three different concentrations of both protein elicitors were applied on the tomato seedlings. After the application of PeaT1 and PeBL1, population growth rates of tomato aphid were decreased as compared to the control treatment. In host preference assay, the tomato aphid showed a preference to build a colony on the control as compared to the treated tomato plant, because tomato leaves provided hazardous surface for aphid after the formation of wax and trichome. The concentrations of protein showed significant (p < 0.05) results in life-history traits of the aphid. Jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) showed significant accumulation in tomato seedlings treated with PeaT1 and PeBL1. Elicitors treated plants produced resistance against M. persicae. Our finding suggests that PeaT1 and PeBL1 have shown high potentials against the damage of M. persicae, and both elicitors could be used as novel biological tools against tomato aphid.  相似文献   

18.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

19.
The Mi resistance gene in tomato reduces the feeding, fecundity, and survival of certain isolates of the potato aphid (Macrosiphum euphorbiae Thomas). This study compared the performance of two potato aphid isolates, WU11 and WU12, on nearly isogenic susceptible (Mi-) and resistant (Mi+) tomato cultivars. Although Mi significantly reduced the population growth of both aphids, WU12 numbers decreased by only 15% compared with 95% for isolate WU11. These results show that there are quantitative differences in virulence among potato aphid isolates. Compared with WU11 aphids, isolate WU12 caused more necrosis on both resistant and susceptible plants, and this increased damage may play a role in the partial virulence of isolate WU12. However, infestation with aphid isolate WU12 did not compromise plant defenses against isolate WU11 in resistant plants. Prior inoculation with either aphid isolate caused a modest reduction in the survival of WU12 adults, but this form of induced resistance was observed on both resistant and susceptible cultivars. Thus, Mi did not play a role in acquired resistance or mediate any indirect interactions between the two aphid isolates. Notably, the mode of action of Mi-mediated resistance seemed to differ depending on the aphid isolate tested. Mi dramatically deterred feeding by WU11 aphids, whereas the effects of resistance on isolate WU12 seemed to be caused primarily by antibiosis. Tolerance did not seem to be a major component of Mi-mediated responses, although resistant plants showed a modest reduction in the amount of foliar necrosis induced per aphid compared with susceptible plants.  相似文献   

20.
Recent advances in the understanding of plant signaling pathways have opened the way for using elicitor‐induced plant resistance as a tactic for protecting plants against arthropod pests. Four common elicitors of induced responses in tomato, Lycopersicon esculentum Mill. (Solanaceae), were evaluated with regard to phytotoxicity, induction of plant defensive proteins, and effects on population growth and fecundity of a common pest, the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Ethephon and methyl jasmonate (MJ) treatments caused varying degrees of phytotoxicity. Ethephon caused pronounced changes in plant growth form and severe, dose‐dependent negative impacts on plant growth and flowering. Effects with MJ were milder, but still caused temporary inhibition of development, leading to smaller plants and delayed flowering. The commercial elicitors benzothiadiazole (BTH) and harpin did not cause detectable phytotoxicity. The highest doses of ethephon and MJ significantly increased leaf peroxidase (POD) levels but only MJ treatments significantly increased polyphenol oxidase (PPO) levels. BTH and harpin had no detectable effects on POD and PPO. Populations of green peach aphids grew significantly more slowly on plants treated with BTH or MJ than on control plants or plants treated with harpin or ethephon. Slowed aphid population growth on BTH‐treated plants was due to significant reductions in aphid fecundity, although this was independent of changes in time to onset of reproduction or time to death. Aphid fecundity was also reduced on MJ‐treated plants relative to controls, but this difference was not statistically significant, suggesting that other mechanisms are involved in slowing aphid population growth on MJ‐treated plants. Growth of aphid populations on plants treated with a MJ–BTH mixture was reduced almost as much as with treatments of MJ alone, suggesting that antagonism between JA‐dependant and SA‐dependent plant signaling pathways is only mild with regard to induced defenses against aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号