首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本研究目的在于探讨丝裂素活化蛋白激酶(MAPK)是否在AngⅡ(10-8mol/L)诱导的培养新生大鼠心肌成纤维细胞(FB)的增殖反应中起重要作用。实验以FB数目和DNA合成速率(3H-胸腺嘧啶掺入率)为增殖指标,[γ-32P]ATP掺入法和免疫印迹法分别测定FBMAPK的活性和含量,结果发现(1)AngⅡ处理FB24h后,DNA合成速率和细胞数比对照组分别增加60%和39%;(2)AngⅡ处理FB5min后,MAPK活性比对照组增高203%;(3)培养新生大鼠FB含有两个MAPK同型体-p44mapk和p42mapk,其中p44mapk含量高于p42mapk,分别为总量的58%和42%。AngⅡ处理5min后,MAPK蛋白含量(p44+p42〕增高429%,其中p44mapk的增加明显大于p42mapk的增加,分别比相应对照增高486%和349%。以上结果表明,AngⅡ诱导的MAPK活性和含量的增加,参与了FB的增殖反应,其中p44mapk的作用较为显著  相似文献   

2.
以大鼠成骨肉瘤细胞(UMR106)为模型,研究了表皮生长因子(EGF)对其受体酪氨酸蛋白激酶(TPK)的调节作用。以本实验室从植物中提取纯化的二萜类活性物质(RFP134)为诱导分化剂,观察了RFP134对UMR106细胞EGF受体TPK的活性和磷酸化作用的影响,并与RA和RFP134+RA处理细胞做了比较,结果显示EGF与其受体结合后能激活TPK,使TPK活性增加2倍.RFP134,RA,RFP134+RA处理细胞后,分别降低EGF诱导的受体TPK活性50%,43%,55%,降低磷酸化TPK含量55%,36%,53%。从结果中发现无EGF刺激的细胞也具有受体TPK磷酸化作用,用RFP134,RA,RFP134+RA处理细胞,分别降低受体磷酸化TPK含量59%,40%,57%,而且我们发现用EGF诱导的细胞受体TPK含量高于无EGF作用的细胞.提示UMR106细胞本身可能具有受体TPK活性,能够引起细胞受体自动磷酸化,EGF刺激后TPK的磷酸化作用增强,可见RFP134对EGF诱导的TPK磷酸化和无EGF诱导的受体自动磷酸化都具有明显的抑制作用,(并强于RA)这可能与在第二信使水平上阻抑PTPK活性密切相关  相似文献   

3.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

4.
RFP134对UMR106细胞EGF受体酪氨酸蛋白激酶的调节作用   总被引:1,自引:0,他引:1  
以大鼠成骨肉瘤细胞(UMR106)为模型,研究了表皮生长因子(EGF)对其受体酪氨酸蛋白激酶(TPK)的调节作用。以及实验室从植物中提取纯化的二萜类活性物质(RFP134)为诱导分化剂,观察了RFP134对UMP106细胞EGF受体TPK的活性和磷酸化作用的影响。并与RA和RFP134+RA处理细胞做了比较。结果显示EGF与其受体结合后能激活TPK,使TPK活性增加2倍。RFP134,RA,RFP  相似文献   

5.
表皮生长因子(EGF)、转化生长因子-α(TGFα)、表皮生长因子受体(EGFR)和蛋白激酶C(PKC)与细胞生长、增殖分化调节和细胞癌变有密切关系。作者用免疫组织化学方法检测了细支气管肺泡细胞增生(BAH)和细支气管肺泡细胞癌(BAC)的EGF、TGFα、EGFR和PKC表达。结果表明:BAC中的EGF、TGFα阳性率和阳性强度以及EGFR、PKC阳性强度均明显高于BAH。BAH的重度不典型增生病例,其EGF、TGFα、EGFR和PKC均呈高表达。TGFα、EGFR和PKC三者在BAC和BAH中的表达存在明显相关性。提示:TGFα及其受体EGFR和PKC是细支气管肺泡细胞增生、恶性转化和肺泡癌细胞失控生长的重要因素。  相似文献   

6.
血管平滑肌细胞增殖与Cdk抑制蛋白p27的表达   总被引:5,自引:1,他引:4  
Yuan Y  Xu DL  Liu YL  Jia MY 《生理学报》1999,51(3):285-290
p27蛋白是细胞周期素依赖性激酶(Cdk)抑制蛋白家族中的一种,主要对外部促进或抑制细胞增殖的信号起反应。本研究应用流式细胞仪(FCM)双标记的方法观察血管紧张素Ⅱ(AngⅡ)、血管加压素(AVP)和血小板源生长因子(PDGF)对血管平滑肌细胞(VSMCs)细胞周期百分比和p27蛋白表达量的影响。静止状态培养的VSMCs加入AngⅡ,AVP,PDGFBB后,在不同时间收集细胞,用碘化丙啶(PI)标记细胞DNA,以确定细胞所处的周期。用p27蛋白的单抗和标记了FITC的二抗标记细胞,通过流式细胞仪测定被激发出的荧光量来确定细胞p27蛋白表达的相对量。结果显示,AngⅡ刺激VSMCs增生,其蛋白含量增加了436%(P<001),但不抑制p27蛋白的表达;AVP可轻度抑制p27的表达,有轻度促进VSMCs增殖和增生的作用(P<005);PDGF明显抑制p27的表达,引起细胞增殖。本研究结果提示,p27蛋白抑制VSMCs通过G1期进入S期,是抑制VSMCs增殖的重要调节因子。  相似文献   

7.
几种扩血管多肽对bFGF促血管平滑肌细胞增殖作用的影响   总被引:3,自引:0,他引:3  
目的和方法:研究肾上腺髓质素(Adm)、降钙素基因相关肽(CGRP)及C-型心房利太(CNP)对碱性成纤维细胞生长因子(bFGF)促血管平滑细胞(VSMC)增殖作用的影响及其机制。结果:孵育24h后,bFGF刺激VSMC增殖较对照组增加2.1倍(P〈0.01),细胞内蛋白磷酸化程度增加1.4倍(P〈0.01),PKC及MAPK活性分别增加1.5和2.5倍(P〈0.010;Adm.CGRPt CNP  相似文献   

8.
自发性高血压大鼠心肌肥厚和心肌MAPK、AngⅡ的关系   总被引:6,自引:1,他引:5  
He KL  Zheng QF  Mu SC  Li TC  Pang YZ  Tang CS 《生理学报》1998,50(5):539-542
放免法测定自发性高血压大鼠(SHR)血浆及心肌血管紧张素Ⅱ(AngⅡ)含量,凝胶内磷酸化法测定心肌丝裂素活化蛋白激酶活性(MAPK),以心脏重/体重表示心肌肥厚程度。结果表明:与4个月的WKY大鼠比较,4个月的SHR血浆和心肌组织AngⅡ及心肌MAPK活性分别增加了218.6%、101.2%和107.0%,心肌肥大程度严重,其中MAPK活性与心肌肥大程度呈明显正相关。提示4个月SHR心肌肥厚可能是  相似文献   

9.
MKP—1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:2,自引:0,他引:2  
Liu PQ  Lu W  Wang TH  Pan JY 《生理学报》2000,52(5):365-370
本研究主要从丝裂原活化蛋白激酶磷酸酶-1(MKP-1)角度,研究丝裂原活化蛋白激酶(MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标,以凝胶内MBP原位磷酸化测定MAPK活性,以免疫印迹法(Western boltting)分别测定MKP-1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发  相似文献   

10.
李田昌  佟利家 《生理学报》1996,48(4):337-342
内皮素(endothelin,ET)是已知的体内活性最强的缩血管物质,其缩血管作用由G蛋白偶联受体所介导。但ET强大的促血管平滑肌细胞(VSMC)增生效应的机理尚未完全阐明。本研究选用培养的兔胸主动脉VSMC,探讨丝裂素活化蛋白激酶(MAPK)在ET促细胞增生中的作用。结果表明:ET-1呈时间和浓度依赖性地促进细胞摄取 ̄3H-TdR和激活MAPK,此作用可被蛋白激酶C(proteinkinaseC,PKC)抑制剂Staurosporine(STP),H-7和ET_A受体拮抗剂BQ123所抑制,但不被酪氨酸激酶抑制剂HerbimycinA(Herb)所抑制,用PKC激动剂PMA(Phorbolmyristateacetate)预处理VSMC,使其PKC活性下调,可显著减弱ET-1对MAPK的激活能力。本结果提示:(1)MAPK参与ET-1所致的VSMC增生;(2)ET-1促细胞增生与激活MAPK的作用是由ET_A受体和PKC介导的。  相似文献   

11.
In cultured vascular smooth muscle cells (VSMC), the vasculotrophic factor, angiotensin II (AngII) activates three major MAPKs via the G(q)-coupled AT1 receptor. Extracellular signal-regulated kinase (ERK) activation by AngII requires Ca(2+)-dependent "transactivation" of the EGF receptor that may involve a metalloprotease to stimulate processing of an EGF receptor ligand from its precursor. Whether EGF receptor transactivation also contributes to activation of other members of MAPKs such as p38MAPK and c-Jun N-terminal kinase (JNK) by AngII remains unclear. In the present study, we have examined the effects of a synthetic metalloprotease inhibitor BB2116, and the EGF receptor kinase inhibitor AG1478 on AngII-induced activation of MAPKs in cultured VSMC. BB2116 markedly inhibited ERK activation induced by AngII or the Ca(2+) ionophore without affecting the activation by EGF or PDGF. BB2116 as well as HB-EGF neutralizing antibody inhibited the EGF receptor transactivation by AngII, suggesting a critical role of HB-EGF in the metalloprotease-dependent EGF receptor transactivation. In addition to the ERK activation, activation of p38MAPK and JNK by AngII was inhibited by an AT1 receptor antagonist, RNH6270. and EGF markedly activate p38MAPK, whereas but not EGF markedly activates JNK, indicating the possible contribution of the EGF receptor transactivation to the p38MAPK activation. The findings that both BB2116 and AG1478 specifically inhibited activation of p38MAPK but not JNK by AngII support this hypothesis. From these data, we conclude that ERK and p38MAPK activation by AngII requires the metalloprotease-dependent EGF receptor transactivation, whereas the JNK activation is regulated without involvement of EGF receptor transactivation.  相似文献   

12.
In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Calpha (PKCalpha) and beta activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCalpha and -beta activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCbeta with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCbeta block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCbeta. Finally, blocking PKCalpha expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCalpha and -beta. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCbeta plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.  相似文献   

13.
BACKGROUND/AIMS: Phosphatases are involved in regulation of MAP kinase (MAPK). A431 cells migrate on collagen after EGF stimulation using MAPK. To clarify the involvement of PP2A in this MAPK-dependent migration, the expression of an isoform of the B regulatory subunit was inhibited. METHODS: An antisense sequence corresponding to Bbeta cDNA was transfected into A431 cells. Their migratory activity on collagen was examined using Transwell, and MAPK phosphorylation and phosphatase activity were measured, and the results were compared with those obtained with mock-transfected cells. RESULTS: Antisense-transfected cells showed less Bbeta protein and phosphatase activity than mock-transfected controls. Migration of antisense-transfected cells showed a low response to EGF. The response of MAPK phosphorylation of antisense-transfected cells to EGF stimulation and adhesion to collagen in the presence or absence of EGF were markedly decreased. Phosphatase activity of PP2A-Bbeta also did not respond to EGF, collagen or EGF plus collagen, and remained at low levels. CONCLUSION: These results suggested that PP2A-Bbeta promotes cell migration through the MAPK cascade.  相似文献   

14.
15.
16.
17.
Murine embryonic palate mesenchyme (MEPM) cells are responsive to a number of endogenous factors found in the local embryonic tissue environment. Recently, it was shown that activation of the cyclic AMP (cAMP) or the transforming growth factor β (TGFβ) signal transduction pathways modulates the proliferative response of MEPM cells to epidermal growth factor (EGF). Since the mitogen-activated protein kinase (MAPK) cascade is a signal transduction pathway that mediates cellular responsiveness to EGF, we examined the possibility that several signaling pathways which abrogate EGF-stimulated proliferation do so via the p42/p44 MAPK signaling pathway. We demonstrate that EGF stimulates MAPK phosphorylation and activity in MEPM cells maximally at 5 minutes. Tyrosine phosphorylation and activation of MAPK was unaffected by treatment of MEPM cells with TGFβ or cholera toxin. Similarly, TGFβ altered neither EGF-induced MAPK tyrosine phosphorylation nor activity. However, the calcium ionophore, A23187, significantly increased MAPK phosphorylation which was further increased in the presence of EGF, although calcium mobilization reduced EGF-induced proliferation. Despite the increase in phosphorylation, we could not demonstrate induction of MAPK activity by A23187. Like EGF, phorbol ester, under conditions which activate PKC isozymes in MEPM cells, increased MAPK phosphorylation and activity but was also growth inhibitory to MEPM cells. The MEK inhibitor, PD098059, only partially abrogated EGF-induced phosphorylation. Likewise, depletion of PKC isozymes partially abrogated EGF-induced MAPK phosphorylation. Inhibition of both MEK and PKC isozymes resulted in a marked decrease in MAPK activity, confirming that EGF uses multiple pathways to stimulate MAPK activity. These data indicate that the MAPK cascade does not mediate signal transduction of several agents that inhibit growth in MEPM cells, and that there is a dissociation of the proliferative response and MAP kinase activation. Furthermore, other signaling pathways known to play significant roles in differentiation of palatal tissue converge with the MAPK cascade and may use this pathway in the regulation of alternative cellular processes. J. Cell. Physiol. 176:266–280, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.  相似文献   

19.
The objective of the present study was to determine whether dehydroepiandrosterone (DHEA) modifies growth factor-induced mitogen-activated protein kinase (MAPK) activation, based on our previous study demonstrating that DHEA attenuates fetal calf serum-induced proliferation in human male aortic smooth muscle cells (human male aortic SMCs). Human male aortic SMCs were used for this study. Platelet-derived growth factor-BB (PDGF-BB), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF), but not insulin-like growth factor-1 (IGF-1), stimulated MAPK activity. Only MAPK activation induced by PDGF-BB was reduced by pretreatment with DHEA, although DHEA did not affect the MAPK activation induced by EGF or bFGF. The basal and PDGF-stimulated MAPK activity were decreased by two types of cyclic AMP (cAMP) elevating agents and increased by cAMP-dependent protein kinase (PKA) inhibitor in human male aortic SMCs, suggesting that cAMP regulates MAPK negatively. The intracellular cAMP was increased by PDGF-BB. The increase of cAMP by PDGF-BB was augmented by pretreatment with DHEA, although DHEA alone did not affect cAMP. Neither EGF nor bFGF affected cAMP with and without DHEA pretreatment. Secretion of PGE2 induced by PDGF was augmented by pretreatment with DHEA. Stimulatory effects of DHEA on the production of PGE2 and cAMP were partially canceled by aromatase inhibitor and completely canceled by indomethacin or selective inhibitor of cyclooxygenase-2. These results suggest that DHEA inhibited MAPK activation induced by PDGF-BB via PGE2 overproduction and subsequent cAMP-dependent pathway in human male aortic SMCs.  相似文献   

20.
白介素-10抑制TNF-α诱导的血管平滑肌细胞增殖   总被引:7,自引:0,他引:7  
OuYang P  Peng LS  Yang H  Wu WY  Xu AL 《生理学报》2002,54(1):79-82
研究观察了重组人白介素 10 (rhIL 10 )对肿瘤坏死因子 (TNF α)刺激的离体大鼠胸主动脉血管平滑肌细胞增殖、细胞周期及对p4 4 /p4 2丝裂素活化蛋白激酶的影响。实验培养大鼠主动脉血管平滑肌细胞 ,采用MTS/PES法确定血管平滑肌细胞 (vascularsmoothmusclecells,VSMCs)的增殖状态 ;应用流式细胞术测定细胞周期 ;利用p4 4 / 4 2磷酸化抗MAPK抗体的蛋白免疫印迹法测定MAPK蛋白表达。结果显示 :( 1)TNF α处理组与对照组相比 ,TNF α对VSMC增殖具有明显的刺激作用 (P <0 0 5 )。rhIL 10单独应用对VSMCs生长没有影响 (P >0 0 5 )。在TNF α刺激下 ,低至 10ng/ml的rhIL 10可抑制VSMCs的生长 (P <0 0 5 )。流式细胞术测定的结果显示 ,rhIL 10分别可使TNF α作用下的VSMC大部分处于G0 /G1期 ,与对照组相比有明显差异 (P <0 0 1)。 ( 2 )TNF α对p4 4 /p4 2MAPK蛋白表达有显著的增强作用 ,此作用可被rhIL 10抑制。结果提示 ,rhIL 10可抑制TNF α诱导的VSMC增殖及p4 4 /p4 2丝裂素活化蛋白激酶的表达  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号