首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Cabrera  B Friebe  J Jiang  B S Gill 《Génome》1995,38(3):435-442
C-banding patterns of Hordeum chilense and of Triticum aestivum 'Chinese Spring' - H. chilense disomic addition lines were analyzed and compared with in situ hybridization patterns using a biotin-labeled highly repetitive Triticum tauschii DNA sequence, pAs1, and a wheat 18S-26S rDNA probe. All seven H. chilense chromosomes pairs and the added H. chilense chromosomes present in the addition lines were identified by their characteristic C-banding pattern. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent H. chilense accession. A C-banded karyotype of the added H. chilense chromosomes was constructed and chromosome lengths, arm ratios, and relative length, as compared with chromosome 3B, were determined. The probe pAs1 was found to hybridize to specific areas on telomeres and interstitial sites along the chromosomes, allowing the identification of all seven pairs of the H. chilense chromosomes. Comparison of the patterns of distribution of the hybridization sites of clone pAs1 in the T. tauschii and H. chilense chromosomes was carried out by in situ hybridization on somatic metaphase chromosomes of the HchHchDD amphiploid. In situ hybridization using the 18S-26S rDNA probe confirmed that the H. chilense chromosomes 5Hch and 6Hch were carrying nucleolus organizer regions. The results are discussed on the basis of phylogenetic relationships between D and Hch genomes.  相似文献   

2.
X Cai  S S Jones  T D Murray 《Génome》1996,39(1):56-62
Related wheat (Triticum aestivum L.) breeding lines, PI 561033, REA 9232, REA 9257, and CI 13113 were analyzed cytogenetically to characterize the association of resistance to cephalosporium stripe (caused by Cephalosporium gramineum Nis. & Ika.) with Agropyron elongatum chromatin. One pair of A. elongatum chromosomes was detected in PI 561033, REA 9232, and CI 13113 by genomic in situ hybridization. The sib line of PI 561033 and REA 9232, REA 9257, which is not resistant to this disease, lacked this pair of A. elongatum chromosomes. PI 561033 was characterized as a disomic T. aestivum - A. elongatum 6Ae#2(6A) chromosome substitution line using test crosses and C-banding. In situ hybridization and test crosses showed that the donor parent, CI 13113, also had chromosome 6A substituted by A. elongatum chromosome 6Ae#2. The C-banding pattern of 6Ae#2 showed two subterminal bands on the long arm and one small band proximal to the centromere on the short arm. Based on chromosome pairing and compensation, chromosome 6Ae#2 shows a close homoeologous relationship with wheat chromosome 6A. Key words : Cephalosporium gramineum, Agropyron elongatum, in situ hybridization, C-banding, chromosome substitution.  相似文献   

3.
The metaphase chromosomes of Notophthalmus (Triturus) viridescens have been studied by C-banding and in situ hybridization. The chromosomes show the pericentric C-banding seen in many organisms and in addition have interstitial C-bands located a short distance from the pericentric C-bands on each chromosome arm. A few C-bands are seen in telomeric regions. Regions which hybridize in situ with 18S and 28S ribosomal RNA were found on three chromosome pairs. The animals studied fell into three groups with respect to which of the six possible sites showed detectable hybridization with 18S and 28S RNA. Individual animals differed not only in the pattern of in situ hybridization of ribosomal RNA but also in the number of ribosomal RNA cistrons in the genome as measured by saturation hybridization on purified DNA. In situ hybridization showed five pairs of chromosomes which contained DNA complementary to 5S RNA. The four pairs of subtelocentric chromosomes in the N. viridescens karyotype all have 5S DNA in the pericentric regions. The fifth cluster of 5S DNA is in the middle of one arm of the chromosomes in one of the two smallest submetacentric pairs in the genome. The five sites of 5S DNA differ markedly in the level of in situ hybridization with 5S cRNA.  相似文献   

4.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测.结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secalecereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体.进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai.同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论.  相似文献   

5.
Two alien translocation lines referring to chromosome Lr. 7 of Leymus racemosus (lam.) Tzvel. were produced from M2 of Triticum aestivum-L, racemosus Lr. 7 monosomic addition lines irradiated with 60Co- γ rays of 600-1125R does shortly before meiosis. Among them, T02 was identified to contain largely-alien, partly-wheat translocation chromosomes, T08 contains a centric fusion translocation chromosome of TLr. 7S (L?) ·4AL on the basis of Giemasa C-banding and fluorescent in situ hybridization (FISH).  相似文献   

6.
The character of chromosome pairing in meiocytes was studied in F1 wheat-rye Triticum aestivum L. x Secale cereale L. (ABDR, 4x = 28) hybrids with three types of chromosome behavior: reductional, equational, and equational + reductional. A high variation of the frequencies of bivalents and ring univalents was observed in meiocytes with the reductional or equational + reductional type of chromosome behavior. The type of chromosome division was found to affect the bivalent and ring univalent frequencies. Chromosome pairing occurred in 10.28% of meiocytes with the reductional chromosome behavior, 0.93% of meiocytes with the equational chromosome behavior, and 10.81% of meiocytes with the equational + reductional chromosome behavior. On average, 0.13 bivalents per cell formed in meiocytes of the hybrid population. C-banding and genomic in situ hybridization (GISH) showed that both rye and wheat chromosomes produced ring univalents. The role of the Ph genes in regulating the bivalent formation in meiocytes with different types of chromosome behavior is discussed.  相似文献   

7.
Sequential chromosome banding and in situ hybridization analysis.   总被引:28,自引:0,他引:28  
J Jiang  B S Gill 《Génome》1993,36(4):792-795
Different combinations of chromosome N- or C-banding with in situ hybridization (ISH) or genomic in situ hybridization (GISH) were sequentially performed on metaphase chromosomes of wheat. A modified N-banding-ISH/GISH sequential procedure gave best results. Similarly, a modified C-banding - ISH/GISH procedure also gave satisfactory results. The variation of the hot acid treatment in the standard chromosome N- or C-banding procedures was the major factor affecting the resolution of the subsequent ISH and GISH. By the sequential chromosome banding - ISH/GISH analysis, multicopy DNA sequences and the breakpoints of wheat-alien translocations were directly allocated to specific chromosomes of wheat. The sequential chromosome banding- ISH/GISH technique should be widely applicable in genome mapping, especially in cytogenetic and molecular mapping of heterochromatic and euchromatic regions of plant and animal chromosomes.  相似文献   

8.
Diagnostic markers for eight Thinopyrum distichum addition chromosomes in Triticum turgidum were established using C-banding, in situ hybridization, and restriction fragment length polymorphism analysis. The C-band karyotype conclusively identified individual Th. distichum chromosomes and distinguished them from chromosomes of T. turgidum. Also, TaqI and BamHI restriction fragments containing 5S and 18S-5.8S-26S rRNA sequences were identified as positive markers specific to Th. distichum chromosomes. Simultaneous fluorescence in situ hybridization showed both 5S and 18S-5.8S-26S ribosomal RNA genes to be located on chromosome IV. Thinopyrum distichum chromosome VII carried only a 18S-5.8S-26S rRNA locus and chromosome pair II carried only a 5S rRNA locus. The arrangement of these loci on Th. distichum chromosome IV was different from that on wheat chromosome pair 1B. Two other unidentified Th. distichum chromosome pairs also carried 5S rRNA loci. The homoeologous relationship between Th. distichum chromosomes IV and VII and chromosomes of other members of the Triticeae was discussed by comparing results obtained using these physical and molecular markers.  相似文献   

9.
B Friebe  N Tuleen  J Jiang  B S Gill 《Génome》1993,36(4):731-742
C-banding polymorphism was analyzed in 17 accessions of Triticum longissimum from Israel and Jordan, and a generalized idiogram of this species was established. C-banding analysis was further used to identify two sets of disomic T. aestivum - T. longissimum chromosome addition lines and 13 ditelosomic addition lines and one monotelosomic (6S1L) addition line. C-banding was also used to identify T. aestivum - T. longissimum chromosome substitution and translocation lines. Two major nucleolus organizing regions (NORs) on 5S1 and 6S1 and one minor NOR on 1S1 were detected by in situ hybridization using a 18S-26S rDNA probe. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of T. longissimum chromosomes. The T. longissimum chromosomes compensate rather well and fertility was restored even in substitution lines involving wheat chromosomes 2A, 4B, and 6B that contain major fertility genes. Except for the deleterious gametocidal genes, T. longissimum can be considered as a suitable donor of useful genes for wheat improvement.  相似文献   

10.
利用C分带、基因组原位杂交并结合分子生物学手段,对12份巨穗小麦种质材料中的外源遗传物质进行了检测。结果表明,12份材料染色体数均为42,其中5份材料均具有一对小麦-黑麦(Triticum aestivum-Secale cereal)1BL/1RS易位染色体和一对中间偃麦草(Agropyron intermedium Garten)染色体、3份材料只具有一对中间偃麦草染色体、3份材料只具一对1BL/1RS染色体、1份材料无1BL/1RS和中间偃麦草染色体。进一步细胞学分析表明,此中间偃麦草染色体代换了普通小麦(Triticum aestivum L.)中的2D染色体,因其良好的同源补偿性,表示为2Ai。同时对2Ai在巨穗小麦种质中存在的遗传学意义及小麦遗传改良中的应用进行了讨论。  相似文献   

11.
An improved modification of genomic in situ hybridization (GISH) was proposed. It allows clear and reproducible discrimination between closely related genomes of both tetraploid and hexaploid wheat species due to preannealing of labeled DNA probes and prehybridization of chromosomal samples with blocking DNA. The method was applied to analyze intergenomic translocations 6A:6B and 1A:6B identified in the IG46147 and IG116188 samples of tetraploid wheat Triticum dicoccoides by C-banding. The structure of the rearranged chromosomes was defined for two translocation variants, and the breakpoints were identified on the chromosome arms. Possible application of the developed GISH variant to study genome reorganizations during speciation of allopolyploid plants in evolution is discussed.  相似文献   

12.
Two substitution lines, designated as 930498 and 930483, and one addition line, designated as 930029, via Fo immature embryo culture of Triticum aestivum x octoploid triticale ( x Triti-cosecale Wittmack) were identified. Fluorescence in situ hybridization (FISH) using total genomic DNA of rye ( Secale cereale L. ) as probe corroborated the existence of rye chromosomes, further confirmed through chromosome paring at meiotic metaphase 1, C-banding and glutenin SDS- PAGE. The results demonstrated that the two substitution lines are ID/IR, and the addition line is also IR addition. Rye chromosomes that are distinct to the red-colored wheat chromosomes appear yellow-green at mitotic metaphase after FISH.  相似文献   

13.
应用基因组原位杂交鉴定蓝粒小麦及其诱变后代   总被引:9,自引:0,他引:9  
杨国华  李滨  刘建中  英加  穆素梅  周汉平  李振声 《遗传学报》2002,29(3):255-259,T001
应用基因组原位杂交技术(GISH)对普通小麦(Triticum aestivumL.)和长穗偃麦草[Agropyron elongatum(Host)Beauv,2n=10x=70]杂交后选育出的蓝粒小麦蓝-58及其诱变后代的染色体组成进行了鉴定。结果表明,GISH可方便地检测到小麦遗传背景中的长穗偃麦草染色体或易位的片段。如前人报道,蓝-58(2n=42)是一个具有2条长穗偃麦草4E染色体的异代换系(4E/4D)。LW004可能是一个具有两对相互易位染色体的纯合系,其田间表现磷高效特性,LW43-3-4为41条染色体的蓝单体(40W 1’4E),种子颜色为浅蓝色,通过此法还检测出一些染色体结构发生很大变异的材料如4E的单端体(40W 1‘4E),种子颜色为浅蓝色,通过此法还检测出一些染色结构发生很大变异的材料如4E的单端体(40W 1‘t4E)以及组型为39W 1‘4E 1‘t4E的个体,此项研究结果更为直观地表明控制蓝粒体状的基因的确在来自长穗偃麦草的染色体上。同时说明有效的突变方法与灵活方便的检测手段的有机结合在染色体工程材料的创制和染色体工程育种中起着至关重要的作用。  相似文献   

14.
45S rDNA在小麦及其近缘物种染色体上的分布   总被引:5,自引:0,他引:5  
徐川梅  别同德  王春梅  周波  陈佩度 《遗传》2007,29(9):1126-1130
将染色体C-分带和原位杂交技术相结合,系统研究了45S rDNA在栽培一粒小麦、野生二粒小麦、普通小麦、大麦、簇毛麦、硬簇麦、六倍体燕麦及鹅观草等物种染色体上的分布情况。这些物种染色体的次缢痕区都有45S rDNA位点, 某些非随体染色体上也有45S rDNA位点分布。以小麦—鹅观草1Rk#1二体附加系为材料,通过顺序C分带-FISH技术首次将一个45S rDNA定位到1Rk#1染色体短臂末端。  相似文献   

15.
E D Badaeva  B Friebe  B S Gill 《Génome》1996,39(2):293-306
Genome differentiation in 12 diploid Aegilops species was analyzed using in situ hybridization with the highly repetitive DNA sequences pSc119 and pAs1 and C-banding. Chromosomes of all these diploid Aegilops species hybridized with the pSc119 probe; however, the level of hybridization and labeling patterns differed among genomes. Only four species (Ae. squarrosa, Ae. comosa, Ae. heldreichii, and Ae. uniaristata) showed distinct hybridization with pAs1. The labeling patterns were species-specific and chromosome-specific. Differences in in situ hybridization (ISH) patterns, also observed by C-banding, exist between the karyotypes of Ae. comosa and Ae. heldreichii, suggesting that they are separate, although closely related, subspecies. The S genome of Ae. spelioides was most similar to the B and G genomes of polyploid wheats on the basis of both C-banding and ISH patterns, but was different from other species of section Sitopsis. These species had different C-banding patterns but they were similar to each other and to Ae. mutica in the distribution of pSc119 hybridization sites. Two types of labeling were detected in Ae. squarrosa with the pAs1 probe. The first resembled that of the D-genome chromosomes of bread wheat, Triticum aestivum L. em. Thell., while the second was similar to the D genome of some of the polyploid Aegilops species. Relationships among diploid Aegilops species and the possible mechanisms of genome differentiation are discussed. Key words : wheat, Triticum, Aegilops, in situ hybridization, C-banding, evolution.  相似文献   

16.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

17.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

18.
The structure of primary polytene chromosomes and general architecture of nurse cell nuclei was studied in Calliphora erythrocephala using various methods of differential chromosome banding(G-, R-, C-banding; Ag- and DAPI staining), chromospecific DNA probes and fluorescence in situ hybridization. This analysis revealed differential compaction of particular chromosome regions. The localization of material of polytene chromosome 6 is retained after its rearrangement and the formation of the internal reticular structure of the nucleus. Polytene chromosomes of ovarian nurse cells were shown to have blocks of dense compact material; some of them were more intensely stained by AgNO3. The dynamics of the nucleolus formation was traces at all stages of chromosome polytenization in the C. erythrocephala nurse cells.  相似文献   

19.
Summary Although Giemsa C-banding techniques have been used extensively for assaying cereal heterochromatin, a more specific technique for analyzing cereal heterochromatin has been developed recently with the isolation of DNA sequences present in heterochromatin and their employment in in situ hybridization to cereal chromosomes. A number of triticales were examined for the occurrence of modified rye chromosomes using the in situ hybridization technique. With a heterogeneous sequence probe the amount of rye heterochromatin appears to be relatively constant in wheat backgrounds but when a specific sequence probe was employed variation was observed. Whether this variation reflects polymorphism in rye or whether it is a result of adaption of the rye genome to coexistence with the wheat genome in triticales is discussed. — The triticale Rosner was examined in detail and it was established that the rye chromosome 2R had been replaced by the wheat chromosome 2D.  相似文献   

20.
Using molecular cytogenetic DNA markers, C-banding, pachytene analysis, and fluorescence in situ hybridization (FISH), a high-resolution karyotype was established in the cucumber. C-banding showed distinct hetero chromatic bands on the pericentromeric, telomeric, and intercalary regions of the chromosomes. The C-banding patterns were also consistent with the morphology of 4'-6-diamino-2-phenylindole dihydrochloride (DAPI)-stained pachytene chromosomes. Two repetitive DNA fragments, CsRP1 and CsRP2, were obtained by PCR and localized on the mitotic metaphase and meiotic pachytene chromosomes. CsRP1 was detected on the pericentromeric heterochromatic regions of all chromosomes, except chromosome 1. CsRP2 was detected on 5 (chromosomes 1, 2, 3, 4, and 7) of 7 chromosomes. All homologous chromosome pairs could be distinguished by FISH using 2 RAPD markers. This is the first report on molecular karyotyping of mitotic and meiotic spreads of cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号