首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were initiated to investigate whether mechanisms exist within mitochondria to repair damage incurred by mitochondrial DNA after exposure to alkylating toxins. A clonal isolate from a rat insulinoma cell line was utilized to measure the formation and repair of alkali-labile sites within the mitochondrial genome after exposure to the alkylating antibiotic streptozotocin. Alkali-labile sites were formed in mitochondrial DNA in a dose-dependent fashion. Eight hours after exposure to the toxin, 55% of the lesions were removed. The level of repair increased to 70% after 24 h. In comparison, only 46% of N7-methylguanines were removed across the entire cellular genome. These studies demonstrate that streptozotocin causes appreciable mitochondrial DNA damage in a dose-dependent manner and provide the first evidence that a repair mechanism for alkali-labile sites is present within the mitochondrion.  相似文献   

2.
Experimental and therapeutic use of islet cell preparations could benefit from assays that measure variations in the mass of living beta-cells. Because processes of cell death can be followed by depletion and/or discharge of cell-specific substances, we examined whether in vitro conditions of beta-cell death resulted in changes in tissue and medium content of insulin and of gamma-aminobutyric acid (GABA), two beta-cell-specific compounds with different cellular localization and turnover. Exposure of rat purified beta-cells to streptozotocin (5 mM, 120 min) or to the nitric oxide donor GEA-3162 (GEA; 50 microM, 120 min) caused 80% necrosis within 24 h; at the end of this period, cellular insulin content was not significantly decreased, but cellular GABA content was reduced by 70%; when cultured at basal glucose (6 mM), the toxin-exposed cells did not discharge less insulin but released 80% less GABA in the period 8-24 h. As in rat beta-cell purification, GABA comigrated with insulin during human islet cell isolation. Twenty-four hours after GEA (500 microM, 120 min), human islet cell preparations exhibited 90% dead cells and a 45 and 90% reduction, respectively, in tissue insulin and GABA content; in the period 9-24 h, insulin discharge in the medium was not reduced, but GABA release was decreased by 90%. When rat beta-cells were cultured for 24 h with nontoxic interleukin (IL)-1beta concentrations that suppressed glucose-induced insulin release, cellular GABA content was not decreased and GABA release increased by 90% in the period 8-24 h. These data indicate that a reduction in cellular and medium GABA levels is more sensitive than insulin as a marker for the presence of dead beta-cells in isolated preparations. Pancreatic GABA content also rapidly decreased after streptozotocin injection and remained unaffected by 12 h of hyperglycemia. At further variance with insulin, GABA release from living beta-cells depends little on its cellular content but increases with IL-1beta-induced alterations in beta-cell phenotype.  相似文献   

3.
Chronic exposure of rat pancreatic islets and INS-1 insulinoma cells to glucosamine (GlcN) produced a reduction of glucose-induced (22.2 mM) insulin release that was associated with a reduction of ATP levels and ATP/ADP ratio compared with control groups. To further evaluate mitochondrial function and ATP metabolism, we then studied uncoupling protein-2 (UCP2), F1-F0-ATP-synthase, and mitochondrial membrane potential, a marker of F1-F0-ATP-synthase activity. UCP2 protein levels were unchanged after chronic exposure to GlcN on both pancreatic islets and INS-1 beta-cells. Due to the high number of cells required to measure mitochondrial F1-F0-ATP-synthase protein levels and mitochondrial membrane potential, we used INS-1 cells, and we found that chronic culture with GlcN increased F1-F0-ATP-synthase protein levels but decreased glucose-stimulated changes of mitochondrial membrane potential. Moreover, F1-F0-ATP-synthase was highly glycosylated, as demonstrated by experiments with N-glycosidase F and glycoprotein staining. Tunicamycin (an inhibitor of protein N-glycosylation), when added with GlcN in the culture medium, was able to partially prevent all these negative effects on insulin secretion, adenine nucleotide content, mitochondrial membrane potential, and protein glycosylation. Thus we suggest that GlcN-induced pancreatic beta-cell toxicity might be mediated by reduced cell energy production. An excessive protein N-glycosylation of mitochondrial F1-F0-ATP-synthase might lead to cell damage and secretory alterations in pancreatic beta-cells.  相似文献   

4.
Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cell PDE3 is, however, scarce. To provide such information, we have studied the specific effects of the PDE3B isoform by adenovirus-mediated overexpression. In rat islets and rat insulinoma cells, approximate 10-fold overexpression of PDE3B was accompanied by a 6-8-fold increase in membrane-associated PDE3B activity. The cAMP concentration was significantly lowered in transduced cells (INS-1(832/13)), and insulin secretion in response to stimulation with high glucose (11.1 mm) was reduced by 40% (islets) and 50% (INS-1). Further, the ability of GLP-1 (100 nm) to augment glucose-stimulated insulin secretion was inhibited by approximately 30% (islets) and 70% (INS-1). Accordingly, when stimulating with cAMP, a substantial decrease (65%) in exocytotic capacity was demonstrated in patch-clamped single beta-cells. In untransduced insulinoma cells, application of the PDE3-selective inhibitor OPC3911 (10 microm) was shown to increase glucose-stimulated insulin release as well as cAMP-enhanced exocytosis. The findings suggest a significant role of PDE3B as an important regulator of insulin secretory processes.  相似文献   

5.
It has long been thought that long-chain free fatty acids (FFAs) stimulate insulin secretion via mechanisms involving their metabolism in pancreatic beta-cells. Recently, it was reported that FFAs function as endogenous ligands for GPR40, a G protein-coupled receptor, to amplify glucose-stimulated insulin secretion in an insulinoma cell line and rat islets. However, signal transduction mechanisms for GPR40 in beta-cells are little known. The present study was aimed at elucidating GPR40-linked Ca(2+) signaling mechanisms in rat pancreatic beta-cells. We employed oleic acid (OA), an FFA that has a high affinity for the rat GPR40, and examined its effect on cytosolic Ca(2+) concentration ([Ca(2+)](i)) in single beta-cells by fura 2 fluorescence imaging. OA at 1-10 microM concentration-dependently increased [Ca(2+)](i) in the presence of 5.6, 8.3, and 11.2 mM, but not 2.8 mM, glucose. OA-induced [Ca(2+)](i) increases at 11.2 mM glucose were inhibited in beta-cells transfected with small interfering RNA targeted to rat GPR40 mRNA. OA-induced [Ca(2+)](i) increases were also inhibited by phospholipase C (PLC) inhibitors, U73122 and neomycin, Ca(2+)-free conditions, and an L-type Ca(2+) channel blocker, nitrendipine. Furthermore, OA increased insulin release from isolated islets at 8.3 mM glucose, and it was markedly attenuated by PLC and L-type Ca(2+) channel inhibitors. These results demonstrate that OA interacts with GPR40 to increase [Ca(2+)](i) via PLC- and L-type Ca(2+) channel-mediated pathway in rat islet beta-cells, which may be link to insulin release.  相似文献   

6.
Involvement of mtDNA damage in free fatty acid-induced apoptosis   总被引:5,自引:0,他引:5  
A growing body of evidence indicates that free fatty acids (FFA) can have deleterious effects on beta-cells. It has been suggested that the beta-cell dysfunction and death observed in diabetes may involve exaggerated activation of the inducible form of nitric oxide synthase (iNOS) by FFA, with the resultant generation of excess nitric oxide (NO). However, the cellular targets with which NO interact have not been fully identified. We hypothesized that one of these targets might be mitochondrial DNA (mtDNA). Therefore, experiments were initiated to evaluate damage to mtDNA caused by exposure of INS-1 cells to FFA (2/1 oleate/palmetate). The results showed that FFA caused a dose-dependent increase in mtDNA damage. Additionally, using ligation-mediated PCR, we were able to show that the DNA damage pattern at the nucleotide level was identical to the one induced by pure NO and different from damage caused by peroxynitrite or superoxide. Following exposure to FFA, apoptosis was detected by DAPI staining and cytochrome c release. Treatment of INS-1 cells with the iNOS inhibitor aminoguanidine protected these cells from mtDNA damage and diminished the appearance of apoptosis. These studies suggest that mtDNA may be a sensitive target for NO-induced toxicity which may provoke apoptosis in beta-cells following exposure to FFA.  相似文献   

7.
Epidemiological observations suggest that environmental factors play a role in the pathogenesis of insulin dependent diabetes mellitus (1). Several chemicals have been identified as specific beta cell toxins (2-4). We report here studies to determine the feasibility of using monolayer cultures of pancreatic beta cells from neonatal rat to screen potential diabetogenic chemicals. Cytotoxicity was monitored both by phase microscopy and the release of insulin into the culture medium. In comparative studies, cellular protein and release of 51chromium (51Cr) were measured after addition of test compounds to cultures of fibroblasts derived from pancreatic tissue. The nitrosoamides 1 methyl-l-nitrosourea (MNU), 1,3 bis (2-choroethyl) nitrosourea (BCNU), chlorozotocin (CLZ), and the beta cell toxin, streptozotocin (SZ), were examined. CLZ and SZ were more toxic to pancreatic beta cells than to fibroblasts. In contrast, MNU and BCNU damaged both beta cells and fibroblasts at identical concentrations. These results suggest that in vitro techniques can be used to identify chemicals that selectively injure beta cells. Although SZ-induced toxicity was ameliorated with addition of nicotinamide to cultures of beta cells, nicotinamide did not prevent damage caused by CLZ. This observation indicates different mechanisms of drug-induced cytotoxicity.  相似文献   

8.
DNA damage and repair were studied in a DNA fragment containing the insulin gene after treatment of cells with methylnitrosourea. For these studies, two clonal isolates from the same rat insulinoma cell line which differ in that the insulin gene is transcribed in one (RINr 38) and is silent in the other (RINr B2) were utilized. Both the determination of immunologically reactive insulin released and the expression of insulin mRNA were used to verify that the gene was transcribed in the RINr 38 cells and not in the RINr B2 cells. Repair kinetics for the removal of alkali-labile sites were comparable across the entire genome in the RINr 38 and RINr B2 cells as determined using alkaline sucrose gradient sedimentation and a 32P end-labeling assay for the quantitation of N7-methylguanine. Quantitative DNA blot analysis was utilized to assess the formation and repair of alkali-labile sites within the restriction fragment containing the insulin gene. Alkali-labile sites appeared to be formed equally within the restriction fragment containing the insulin gene in both the RINr 38 and RINr B2 cells. However, at 24 h, 60% of the lesions were removed from the fragment in the RINr 38 cells, where the gene was transcribed, compared to the removal of only 20% in the RINr B2 cells, where the gene was silent. Thus, it appears that alkali-labile sites induced by exposure to methylnitrosourea are repaired more efficiently in the DNA fragment containing the insulin gene when it is actively transcribed.  相似文献   

9.
《The Journal of cell biology》1995,131(6):1561-1572
To assess whether connexin (Cx) expression contributes to insulin secretion, we have investigated normal and tumoral insulin-producing cells for connexins, gap junctions, and coupling. We have found that the glucose-sensitive cells of pancreatic islets and of a rat insulinoma are functionally coupled by gap junctions made of Cx43. In contrast, cells of several lines secreting insulin abnormally do not express Cx43, gap junctions, and coupling. After correction of these defects by stable transfection of Cx43 cDNA, cells expressing modest levels of Cx43 and coupling, as observed in native beta-cells, showed an expression of the insulin gene and an insulin content that were markedly elevated, compared with those observed in both wild-type (uncoupled) cells and in transfected cells overexpressing Cx43. These findings indicate that adequate levels of Cx-mediated coupling are required for proper insulin production and storage.  相似文献   

10.
11.
Polyenoylphosphatidylcholine (PPC), a phosphatidylcholine-rich phospholipid extracted from soybean, has been reported to protect liver cells from alloxan-induced cytotoxicity. The present study aimed to investigate whether PPC protects pancreatic beta-cells from the cytotoxic injury induced by streptozotocin, thus preserving insulin synthesis and secretion. beta-Cells of the PPC-treated rats showed a significant reduction of cell death with lesser destruction of plasma membrane on streptozotocin insult. They demonstrated a rapid recovery of GLUT-2 expression, whereas almost irreversible depletion of membrane-bound GLUT-2 was seen in beta-cells of the rats treated with only streptozotocin. A similar cytoprotective effect of PPC was also monitored in the PPC-pretreated MIN6 cells. These beta-cells retained their ability to synthesize and secrete insulin and no alteration of glucose metabolism was detected. These results strongly suggest that PPC plays important roles not only in protecting beta-cells against cytotoxicity but also in maintaining their insulin synthesis and secretion for normal glucose homeostasis.  相似文献   

12.
13.
Islam MS  Rahman SA  Mirzaei Z  Islam KB 《Life sciences》2005,76(11):1239-1248
Type 2 diabetes is a polygenic disorder characterized by increased insulin resistance, and impaired insulin secretion leading to abnormalities of glucose and lipid metabolism. Reduced responsiveness of the beta-cells to glucose is a critical feature of this syndrome. Glucagon-like peptide 1, a product of the pro-glucagon gene makes beta-cells competent and has many other anti-diabetic properties. We speculated whether GLP-1-based gene therapy could be an approach for treatment of type 2 diabetes. We started with a clone of rat insulinoma cells (S4 cells), which showed reduced responsiveness to glucose in terms of insulin secretion. We transfected these cells with a plasmid encoding a mutated form of GLP-1 (GLP-1-Gly8), which is resistant to the degrading enzyme dipeptidyl-peptidase IV. Activity of secreted GLP-1-Gly8 was assayed using Chinese hamster lung fibroblasts (CHL) cells that expressed cloned GLP-1 receptor and that were transfected with CRE-Luc. Stable cell lines (Glipsulin cells) obtained by this means produced and stored immunoreactive GLP-1-Gly8. In addition to insulin, the Glipsulin cells secreted the GLP-1-Gly8. The secreted GLP-1-Gly8 was active as evidenced by the ability of the conditioned media to elevate cAMP levels in CHL cells expressing GLP-1 receptors. Glipsulin cells responded to glucose with a 6.8 fold increase in insulin secretion compared to a 2.2 fold increase in the control cells. Our results demonstrate that prolonged exposure to GLP-1-Gly8 secreted by increases glucose-responsiveness of these cells. We speculate that engineering GLP-1-Gly8 secretion by beta-cells is a potential gene therapeutic strategy to treat diabetes.  相似文献   

14.
We studied the effects of electrical stimulation on insulin release from rat insulinoma (INS-1) cells. The anodal/cathodal biphasic stimulation (ACBPS) electrical waveform resulted in a voltage- and stimulation duration-dependent increase in insulin release. ACBPS elicited insulin release both in the presence and absence of glucose. Basal and ACBPS-induced insulin secretion could be inhibited by mitochondrial poisons and calcium channel blockers, indicating that insulin release was dependent on adenosine triphosphate (ATP) and the influx of calcium. ACBPS parameters that released insulin caused no detectable plasma membrane damage or cytotoxicity, although temporary morphological changes could be observed immediately after ACBPS. ACBPS did not alter the plasma membrane transmembrane potential but did cause pronounced uptake of MitoTracker Red into the mitochondrial membrane, indicating an increased mitochondrial membrane potential. While the ATP:ADP ratio after ACBPS did not change, the guanosine triphosphate (GTP) levels increased and increased GTP levels have previously been associated with insulin release in INS-1 cells. These results provide evidence that ACBPS can have significant biological effects on cells. In the case of INS-1 cells, ACBPS promotes insulin release without causing cytotoxicity.  相似文献   

15.
Insulin-secreting pancreatic islet beta-cells express a Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) that contains a calmodulin binding site and protein interaction domains. We identified Ca(2+)/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) as a potential iPLA(2)beta-interacting protein by yeast two-hybrid screening of a cDNA library using iPLA(2)beta cDNA as bait. Cloning CaMKIIbeta cDNA from a rat islet library revealed that one dominant CaMKIIbeta isoform mRNA is expressed by adult islets and is not observed in brain or neonatal islets and that there is high conservation of the isoform expressed by rat and human beta-cells. Binary two-hybrid assays using DNA encoding this isoform as bait and iPLA(2)beta DNA as prey confirmed interaction of the enzymes, as did assays with CaMKIIbeta as prey and iPLA(2)beta bait. His-tagged CaMKIIbeta immobilized on metal affinity matrices bound iPLA(2)beta, and this did not require exogenous calmodulin and was not prevented by a calmodulin antagonist or the Ca(2+) chelator EGTA. Activities of both enzymes increased upon their association, and iPLA(2)beta reaction products reduced CaMKIIbeta activity. Both the iPLA(2)beta inhibitor bromoenol lactone and the CaMKIIbeta inhibitor KN93 reduced arachidonate release from INS-1 insulinoma cells, and both inhibit insulin secretion. CaMKIIbeta and iPLA(2)beta can be coimmunoprecipitated from INS-1 cells, and forskolin, which amplifies glucose-induced insulin secretion, increases the abundance of the immunoprecipitatable complex. These findings suggest that iPLA(2)beta and CaMKIIbeta form a signaling complex in beta-cells, consistent with reports that both enzymes participate in insulin secretion and that their expression is coinduced upon differentiation of pancreatic progenitor to endocrine progenitor cells.  相似文献   

16.
17.
Abnormal glucagon secretion is often associated with diabetes mellitus. However, the mechanisms by which nutrients modulate glucagon secretion remain poorly understood. Paracrine modulation by beta- or delta-cells is among the postulated mechanisms. Herein we present further evidence of the paracrine mechanism. First, to activate cellular metabolism and thus hormone secretion in response to specific secretagogues, we engineered insulinoma INS-1E cells using an adenovirus-mediated expression system. Expression of the Na+-dependent dicarboxylate transporter (NaDC)-1 resulted in 2.5- to 4.6-fold (P < 0.01) increases in insulin secretion in response to various tricarboxylic acid cycle intermediates. Similarly, expression of glycerol kinase (GlyK) increased insulin secretion 3.8- or 4.2-fold (P < 0.01) in response to glycerol or dihydroxyacetone, respectively. This cell engineering method was then modified, using the Cre-loxP switching system, to activate beta-cells and non-beta-cells separately in rat islets. NaDC-1 expression only in non-beta-cells, among which alpha-cells are predominant, caused an increase (by 1.8-fold, P < 0.05) in glucagon secretion in response to malate or succinate. However, the increase in glucagon release was prevented when NaDC-1 was expressed in whole islets, i.e., both beta-cells and non-beta-cells. Similarly, an increase in glucagon release with glycerol was observed when GlyK was expressed only in non-beta-cells but not when it was expressed in whole islets. Furthermore, dicarboxylates suppressed basal glucagon secretion by 30% (P < 0.05) when NaDC-1 was expressed only in beta-cells. These data demonstrate that glucagon secretion from rat alpha-cells depends on beta-cell activation and provide insights into the coordinated mechanisms underlying hormone secretion from pancreatic islets.  相似文献   

18.
Interleukin-18 (IL-18) mRNA is expressed in islets of NOD mice during the early stages of insulitis and IL-18 has therefore been implicated as a contributing factor in immune-mediated beta-cell destruction. However, a recent study failed to show any effect of human IL-18 on the function of isolated rat islets. Since species differences have been shown between human and murine IL-18, the aims of this study were to investigate 1) if species homologous IL-18 alone or following IL-12 pre-exposure affected rat islet function, 2) if IL-18 dose-dependently modulated IL-1 beta or interferon-gamma (IFN-gamma) + tumor necrosis factor-alpha (TNF-alpha) actions on islet function, and 3) if IL-18 and IL-18 receptor (IL-18R) were expressed in rat islet beta-cells. Insulin release and nitric oxide (NO) production from isolated rat islets were measured after incubation with or without cytokines. RT-PCR was used to quantitate mRNA expression of IL-18 and the IL-18R signaling chain (IL-18R beta). There were no significant effects of 0.625-10 nM recombinant murine (rm) IL-18 alone on accumulated or glucose-challenged insulin release or NO production after 24 hours. Fifteen pg/ml of recombinant human (rh) IL-1 beta as well as 200 U/ml recombinant rat (rr) IFN-gamma + 250 U/ml rhTNF-alpha significantly increased islet NO production and inhibited both accumulated and glucose-challenged islet insulin release. However, rmIL-18 failed to modulate these effects of IL-1 beta or IFN-gamma + TNF-alpha. Although IL-12 induces IL-18R expression in Th1 and B lymphocytes, 24-hours rmIL-12 preincubation neither sensitized islets to effects of 10 nM of rm or rrIL-18 alone nor primed the islets to IL-1 beta actions on insulin release and NO production. IL-18R beta mRNA, which was expressed in human peripheral blood mononuclear cells (PBMC), was not expressed in rat insulinoma (RIN) cells or in isolated rat islets, even after exposure to IL-1 beta and/or IFN-gamma + TNF-alpha or IL-12. IL-18 mRNA was constitutively expressed in RIN cells, in FACS-purified rat beta-cells and in intact rat and mouse islets, and was up-regulated by IFN-gamma in an interferon regulatory factor-1- IRF-1) and NO - independent manner. However, IL-18 protein was undetectable in lysates and supernates of RIN cells by ECL, Western blotting and immunoprecipitation. In conclusion, we show for the first time that IL-18 but not IL-18R is expressed in rodent islet beta-cells. The physiological importance and pathological role of IL-18 originating from islet beta-cells deserve further investigation.  相似文献   

19.
The glucose responsiveness of alpha- and beta-cells of normal as well as untreated and insulin-treated streptozotocin diabetic rats was tested in the extracorporeal perfusion system. Also assessed was the possible in vitro effect of added insulin on the glucose sensitivity of islets from untreated diabetic animals. Insulin and glucose responsiveness of the two cell types. The rate of glucose entry islet tissue was estimated, and the effect of glucose on the tissue supply of ATP and lactate and the cyclic 3':5'-AMP level of islets was measured under the above in vitro conditions. It was demonstrated that beta-cells are more accessible to glucose than alpha-cells, that glucose entry into islet cells is not significantly modified by insulin and that glucose had no effect on ATP, lactate and cyclic 3':5'-AMP levels of islet tissue under any of the conditions investigated. High insulin in vitro elevated ATP levels of alpha-cell islets independent of extracellular glucose. Glucose caused insulin release from normal but not from diabetic islets and rapidly and efficiently suppressed stimulated glucagon secretion of the pancreas from normal and insulin treated diabetic rats. Glucose was less effective in inhibiting stimulated glucagon secretion by the pancreas from untreated diabetic rats whether insulin was added to the perfusion media or not. Therefore, profound differences of glucose responsiveness of alpha-cells fail to manifest themselves in alterations of basic parameters of glucose and energy metabolism in contrast to what had been postulated in the literature. It is however, apparent that the glucose responsiveness of alpha-cells is modified by insuling by an as yet undefined mechanism.  相似文献   

20.
Mitochondria form filamentous networks that undergo continuous fission/fusion. In the pancreatic beta-cells, mitochondria are essential for the transduction of signals linking nutrient metabolism to insulin granule exocytosis. Here we have studied mitochondrial networks in the insulinoma cell line INS-1E, primary rat and human beta-cells. We have further investigated the impact of mitochondrial fission/fusion on metabolism-secretion coupling in INS-1E cells. Overexpression of hFis1 caused dramatic mitochondrial fragmentation, whereas Mfn1 evoked hyperfusion and the aggregation of mitochondria. Cells overexpressing hFis1 or Mfn1 showed reduced mitochondrial volume, lowered cellular ATP levels, and as a consequence, impaired glucose-stimulated insulin secretion. Decreased mitochondrial ATP generation was partially compensated for by enhanced glycolysis as indicated by increased lactate production in these cells. Dominant-negative Mfn1 elicited mitochondrial shortening and fragmentation of INS-1E cell mitochondria, similar to hFis1. However, the mitochondrial volume, cytosolic ATP levels, and glucose-stimulated insulin secretion were little affected. We conclude that mitochondrial fragmentation per se does not impair metabolism-secretion coupling. Through their impact on mitochondrial bioenergetics and distribution, hFis1 and Mfn1 activities influence mitochondrial signal generation thereby insulin exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号