首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 700-kDa protein composed of 12 apparently identical 60-kDa subunits copurifies with the L8S8 form of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Chromatium vinosum. Chromatography on DEAE-Sephadex A-50 separates the two proteins in pure form. On the basis of the highly reproducible copurification and reaction of the 700-kDa protein with antibodies to pea RuBisCO large (L)-subunit-binding protein, the protein from C. vinosum is designated as a putative binding protein (PBP) for RuBisCO. Also the N-terminal sequence of PBP is quite similar to that of both alpha and beta subunits of the L-subunit-binding protein. Our present research suggests that PBP may be a RuBisCO small-subunit-binding protein in C. vinosum. Measurements of RuBisCO activity and of species that immunologically cross react with RuBisCO or PBP (by enzyme-linked immunosorbent assay) establish that levels of the two proteins vary together in C. vinosum grown on different carbon sources.  相似文献   

2.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   

3.
A reporter gene assay revealed that promoters derived from Synechococcus PCC7942 (S.7942) psbAI and Synechocystis PCC6803 (S.6803) psbAII were suitable for the expression of foreign ribulose-bisphosphate carboxylase (RuBisCO; EC 4.1.1.39) in S.7942 cells. Transformational vectors with a promoter and a foreign RuBisCO gene, cvrbc originated from Allochromatium vinosum, were constructed on a binary vector, pUC303, and introduced to S.7942 cells. When the cvrbc was expressed with the S.7942 psbAI promoter, the total RuBisCO activity increased 2.5- to 4-fold than that of the wild type cell. The S.6803 psbAII promoter increased the activity of the transformant 1.5–2 times of that of wild type cell. There was a significant increase in the rate of photosynthesis depending on the increase of RuBisCO activity. The maximum rate of photosynthesis of the transformant cell was 1.63 times higher than that of the wild type under the illumination of 400 μmol m−2 s−1, at 20 mM bicarbonate and at 30 °C. Although the photosynthesis of the higher plant is limited by the ability of photosystems under high irradiance and the high CO2 concentration, that of the S.7942 cell is limited by the RuBisCO activity, even at high CO2 concentrations and under high irradiance.  相似文献   

4.
Pyrenoid proteins and ribulose-1,5-bisphosphate carboxylase-oxygenase(RuBisCO) in the green alga Bryopsis maxima were purified tohigh degrees and their peptide compositions were studied bySDS-polyacrylamide gel electrophoresis. RuBisCO had a largesubunit of 50 kDa and a small one of 16 kDa. The apparent molecularweight of the purified RuBisCO was estimated as 460 kDa by gelfiltration. Pyrenoid proteins had two major polypeptides: 52kDa and 17 kDa. The peptide map of the 52 kDa pyrenoid polypeptidecoincided well with that of the large subunit of RuBisCO, stronglysuggesting that the major component of the pyrenoid of thisalga was RuBisCO. We attempted to survey the distribution ofRuBisCO in the chloroplasts. The results suggested that muchof the RuBisCO of Bryopsis maxima was localized in the pyrenoid.The pyrenoid also contained more than 10 minor polypeptidesnot found in the RuBisCO fraction. The minor polypeptides comprisedabout 15% of the total pyrenoid protein and differed from thepolypeptides of the thylakoid membranes and from those foundin the starch grains surrounding the pyrenoid. (Received February 3, 1984; Accepted July 21, 1984)  相似文献   

5.
Chloroplasts contain an abundant soluble protein that binds non-covalently newly synthesized large and small subunits of the enzyme ribulose bisphosphate carboxylase-oxygenase. This binding protein has been purified from Pisum sativum and Hordeum vulgare in the form of a dodecamer consisting of equal amounts of two types of subunit. These subunits are synthesized as higher molecular mass precursors by cytoplasmic ribosomes before import into the chloroplast. Antibodies raised against the purified binding protein from Pisum sativum detect polypeptides not only in extracts of plastids from several plant species but also in cell extracts of several bacterial species. The oligomeric binding protein dissociates reversibly into monomeric subunits in the presence of 1–5 mmol/liter MgATP. For one type of subunit the cDNA sequence has been isolated and determined and reveals homology with certain bacterial proteins.These observations are discussed in relation to the idea that the binding protein is an example of a general class of proteins termed "molecular chaperones" which are required for the correct assembly of certain oligomeric proteins such as the carboxylase from their subunits.Abbreviations BP Binding protein - Rubisco Ribulose bisphosphate carboxylase-oxygenase  相似文献   

6.
Chaudhari P  Roy H 《Plant physiology》1989,89(4):1366-1371
Higher plant ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) cannot reassociate after dissociation, and its subunits do not assemble into active RuBisCO when synthesized in Escherichia coli. Newly synthesized subunits of RuBisCO are associated with a high molecular weight binding protein complex in pea chloroplasts. The immediate donor for large subunits which assemble into RuBisCO is a low molecular weight complex which may be derived from the high molecular weight binding protein complex. When the high molecular weight binding protein complex is diluted, it tends to dissociate, forming low molecular weight complexes. When the large subunit-binding protein complexes were examined after in organello protein synthesis, it was found that the low molecular weight complexes were more abundant when protein synthesis was carried out under hypotonic conditions. This increase in the assembly competent population of low molecular weight large subunit complexes can account for the increased amount of in vitro RuBisCO assembly which occurs under these conditions. The data indicate that the assembly of large subunits into RuBisCO is a function of the aggregation state of the large subunit binding protein complex during protein synthesis. This implies that the binding protein exerts its effects during or shortly after large subunit synthesis.  相似文献   

7.
The incorporation of newly synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in pea chloroplast extracts occurs at the expense of intermediate forms of the large subunit which are complexed with a binding protein. Most subunits of this binding protein are found in dodecameric complexes in chloroplast extracts. Addition of small subunits to these extracts results in approximately 40 to 60% increased incorporation of newly made large subunits into RuBisCO at low or zero concentrations of ATP, but is without significant effect at high concentrations of ATP, a condition in which the dodecameric binding protein complex is dissociated into subunits. Overall, these data support the assumption that the incorporation of large subunits into RuBisCO in chloroplast extracts reflects de novo assembly rather than `mere' exchange of subunits. The in vitro assembly of large subunits into RuBisCO is a function of the conditions under which the large subunits are synthesized in organello. When the large subunits are made in chloroplasts suspended in 188 millimolar sorbitol, they are approximately 2- to 3-fold better able to assemble into RuBisCO when subsequently incubated in vitro than when they are synthesized in chloroplasts suspended in 375 millimolar sorbitol. This observation indicates that mere synthesis of large subunits is not sufficient to confer maximal assembly competence on large subunits.  相似文献   

8.
Summary The amino acid sequence of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit (SSU) from Euglena has been established by alignment of the sequence of peptides obtained by cleavage with chymotrypsin, trypsin, Staphylococcus aureus protease or formic acid. The Euglena SSU has 138 amino acids and thus represents longest SSU sequence described so far. Homology is only 41% with cyanobacteria SSU and about 51% with higher plant SSU, whereas it is around 75% between higher plants. The largest homologous portion between all the known SSU sequences is localized in the second half and covers about 20 amino acids. The phylogenetic tree based on known SSU sequences has been established and the rate of amino acid substitution for SSU is estimated to be about 1.35×10-9 per year and per site. Despite heterogeneity in amino acid sequence, we found that the overall secondary structure is fairly well conserved.Abbreviations DABITC Dimethyl amino azobenzene isothiocyanate - HPLC high pressure liquid chromatography - Kd Kilo daltons - LSU large subunit - PITC phenyl isothiocyanate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - SSU small subunit - TFA trifluoric acetic acid  相似文献   

9.
Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. The proteins associated with sulfur globules of Chromatium vinosum and Thiocapsa roseopersicina were isolated by extraction into 50% aqueous acetonitrile containing 1% trifluoroacetic acid and 10 mM dithiothreitol. The extracted proteins were separated by reversed-phase HPLC, revealing three major proteins from C. vinosum and two from T. roseopersicina. All of these proteins have similar, rather unusual amino acid compositions, being rich in glycine and aromatic amino acids, particularly tyrosine. The molecular masses of the C. vinosum proteins were determined to be 10,498, 10,651, and 8,479 Da, while those from T. roseopersicina were found to be 10,661 and 8,759 Da by laser desorption time-of-flight mass spectrometry. The larger T. roseopersicina protein is N-terminally blocked, probably by acetylation, but small amounts of the unblocked form (mass = 10,619) were also isolated by HPLC. Protein sequencing showed that the two larger C. vinosum proteins are homologous to each other and to the large T. roseopersicina protein. The 8,479 Da C. vinosum and 8,759 Da T. roseopersicina proteins are also homologous, indicating that sulfur globule proteins are conserved between different species of purple sulfur bacteria.Abbreviations BNPS-skatole 2 (2-Nitrophenylsulfenyl)-3-methyl-3-bromoindolenine - CNB Cyanogen bromide - Cv1, Cv2, and Cv3 Chromatium vinosum sulfur globule proteins - SGP and SGPs Sulfur globule protein(s) - TFA Trifluoroacetic acid - Tr0, Tr1, and Tr2 Thiocapsa roseopersicina sulfur globule proteins  相似文献   

10.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   

11.
Two chloroplast envelope proteins from spinach (Spinacia oleracea L.) exhibiting relative molecular masses (Mrs) of 26 and 14 kDa are apparently phosphorylated by a unique Ca2+-dependent serine protein kinase. The activity of this enzyme shows the same sensitivity towards pH, Ca2+, Mg2+, H7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine] and ATP concentrations (Siegenthaler and Bovet 1993, Planta 190, 231–240). Autoradiographic analyses following two-dimensional-gel electrophoresis (isoelectric focusing and SDS-PAGE) associated with Western blotting experiments indicate that these two phosphoproteins appeared to be pools of the light-harvesting complex of photosystem II (LHCII) and of the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit, respectively. Immunoprecipitation of envelope-phosphorylated proteins, using immunoglobulins (IgG) directed to the apoprotein of LHCII and to the holoenzyme of Rubisco confirmed that LHCII and the Rubisco small subunit effectively incorporated 32P from (-32P)ATP in isolated envelope membranes. We propose that, in agreement with the fact that protein import is driven by ATP, the phosphorylation of LHCII and the Rubisco small subunit could take place after the processing of precursor proteins and could be an obligatory step for their internalization into chloroplasts.Abbreviations 2D two dimensional - IEF isoelectric focusing - IgG immunoglobulin G - LHCII light-harvesting chlorophyll a/b proteins of PSII - LHCII A apoprotein a of LHCII - LHCIIB apoprotein b of LHCII - LS Rubisco large subunit - Mops (3-[N-morpholino]propanesulfonic acid) - Mr relative molecular mass - PI isoelectric point - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SS Rubisco small subunit The authors are grateful to Delphine Herrmann and Xavier Denys for their technical assistance. They also greatly thank Prof. R. J. Ellis and Dr. L. Barnett (Warwick University, UK) and Dr. P. Schürmann (University of Neuchâtel, Switzerland) for providing them with antibodies directed to the pea and spinach Rubisco holoenzymes and Dr. M. Spangfort (Lund University, Sweden) for his gift of the antibody directed to the pea LHCII apoprotein. This study was supported by the Swiss National Science Foundation. This work was part of a doctoral program carried out by L.B. in the Laboratoire de Physiologie végétale, Université de Neuchâtel, Switzerland.  相似文献   

12.
The enzyme ribulose bisphosphate carboxylase/oxygenase has been purified from Chromatium vinosum. When an extract is subjected to centrifugation at 35,000xg in the presence of polyethylene glycol (PEG)-6000 and the supernatant is treated with 50 mM Mg2+ and the precipitate is then fractionated by vertical centrifugation into a reoriented sucrose gradient followed by chromatography on diethylaminoethyl (DEAE)-Sephadex A50, the resultant enzyme contains large (L) and small (S) subunits. Alternatively, centrifugation of extracts at 175,000xg in the presence of PEG-6000 followed by fractionation with Mg2+, density gradient centrifugation, and chromatography on DEAE-Sephadex A50 yields an enzyme free of small subunits. The two forms have comparable carboxylase and oxygenase activities and have compositions and molecular weights corresponding to L8 and L8S8 enzymes. The amino acid compositions of L and S subunits are reported. The L8S8 enzyme from spinach cannot be similarly dissociated by centrifugation at 175,000xg in the presence of PEG-6000.Abbreviations DEAE diethylaminoethyl - EDTA ethylenediamine-tetraacetate - MOPS 3-(N-morpholino)propanesulfonic acid - PEG polyethylene glycol - RuBisCO d-ribulose 1,5-bisphosphate caboxylase/oxygenase - RnBP d-ribulose 1,5-bisphosphate - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

13.
Prior research suggested that the genes for large (L) and small (S) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) are amplified in ampicillin-resistant pBR322-transformants of Anacystis nidulans 6301. We now report that chromosomal DNA from either untransformed or transformed A. nidulans cells hybridizes with nick-translated [32P]-pBR322 at moderately high stringency. Moreover, nick-translated [32-P]-pCS75, which is a pUC9 derivative containing a PstI insert with L and S subunit genes (for RuBisCO) from A. nidulans, hybridizes at very high stringency with restriction fragments from chromosomal DNA of untransformed and transformed cells as does the 32P-labeled PstI fragment itself. The hybridization patterns suggest the creation of two EcoRI sites in the transformant chromosome by recombination. In pBR322-transformants the RuBisCO activity is elevated 6- to 12-fold in comparison with that of untransformed cells. In spite of the difference in RuBisCO activity, pBR322-transformants grow in the presence of ampicillin at a similar initial rate to that for wild-type cells. Growth characteristics and RuBisCO content during culture in the presence or absence of ampicillin suggest that pBR322-transformants of A. nidulans 6301 are stable. The data also collectively suggest that a given plasmid in the transformed population replicates via a pathway involving recombination between the plasmid and the chromosome.  相似文献   

14.
The dominant natural form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of large (L) 55-kDa and small (S) 15-kDa subunits. This enzyme (as the L8S8 form) is widely distributed among oxygenic photosynthetic species and among chemosynthetic bacteria. Another form lacking small subunits is found as an L2 dimer in Rhodospirillum rubrum or an L oligomer of uncertain aggregation state from Rhodopseudomonas spharoides. The present article reviews two basically different approaches in cloning the R. rubrum gene for RuBisCO. One results in high level expression of this gene product fused with a limited aminoterminal stretch of -galactosidase and the other results in expression of wild-type enzyme in Escherichia coli. Also reviewed are a number of reports of cloning and assembly of the L8S8 enzyme in using E. coli L and S subunit genes from Anacystis nidulans, Anabaena 7120, Chromatium vinosum and Rps. sphaeroides.In vitro oligonucleotide-directed mutagenesis has been applied to the gene for RuBisCO from R. rubrum. In terms of contributing new information to our understanding of the catalytic mechanism for RuBisCO, the most significant replacement has been of lys 166 by a number of neutral amino acids or by arg or his. Results establish that lys 166 is a catalytically essential residue and illustrate the power of directed mutagenesis in understanding structure-function correlates for RuBisCO.Oligonucleotide-directed mutagenesis has also been applied to the first and second conserved regions of the S subunit gene for RuBisCO from A. nidulans. In the latter region, corresponding amino acid changes of trp 55 and trp 58 to phe, singly or together, had little or no effect upon enzyme activity. In contrast, mutagenesis in the first conserved region leading to the following pairs of substitutions: arg10 arg 11 to gly 10 gly11; thr14 phe 15 ser 16 to ala 14 phe 15 ala 16; ser 16 tyr 17 to ala 16 asp 17; or pro 19 pro 20 to ala 19 ala 20, are all deleterious.Advances are anticpated in the introduction and expression of interesting modifications of S (and L) subunit genes in plants. A new method of introducing and expressing foreign genes in isolated etiochloroplasts is identified.Abbreviations RuBisCO ribulose bisphosphate carboxylase/oxygenase - 2-CABP 2-carboxyarabinitol-1,5-bisphosphate - 4-CABP 4-carboxyarabinitol-1,5-bisphosphate  相似文献   

15.
A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M r = 52 kDa) and a small (M r = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe–S clusters, three [2Fe–2S] clusters and five [4Fe–4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe–S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H2-dependent reduction of NAD+. Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni–Fe active site and a [4Fe–4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Nia–C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.  相似文献   

16.
Discoveries of the uptake and expression of various Escherichia coli plasmids by the cyanobacterium Anacystis nidulans and isolated cumber etioplasts are reviewed. In particular, the binding and uptake of nick-translated 32P-labeled plasmids and the expression of genes in the native plasmids are considered.Permeaplasts of A. nidulans 6301 and isolated EDTA-washed cucumber etioplasts exhibit binding and uptake of DNA that is unaffected by uncouplers of photophosphorylation or by dissipators of transmembrane proton graident. ATP inhibits both binding and udptake by permeaplasts or EDTA-washed etioplasts but the analog AMP-PNP (non-hydrolzable) is noninhibitory. With permeaplasts there is no effect of 20 mM Mg2+ (in the light) upon intake, whereas with EDTA-washed etioplasts, Mg2+ at the same concentration inhibits uptake as does 20 mM Ca2+.The transformation of A. nidulans 6301 to ampicillin-resistance by the plasmid pBR322 is much enhanced in permeaplasts. Indeed extracts of transformed cells catalyze the hydrolosis of the -lactam nitrocefin. Transfromation of A. nidulans to antibiotic resistance may also be achieved with the plasmids pHUB4 and pCH1. The effect of light on transformation of A. nidulans 6301 differs with different plasmids. In pBR322 transformants the expression of ribulose bisphosphate carboxylase-oxygenase (RuBisCO) is markedly elevated. In these transformants, the foreign plasmid replicates by a pathway involving chromosomal integration and dissociation.The plasmid pCS75, a derivative of pUC9 (and therefore of pBR322) containing a Pst1 insert carrying genes for the large and small (S) subunits of RuBisCO from A. nidulans, is taken up and expressed in EDTA-washed cucumber cotyledon etioplasts. Expression is evidenced by the hydrolysis of nitrocefin and immunoprecipitation of labeled S subunits of RuBisCO (utilizing etioplasts which have been labeled with 35S-methionine after incubation with pCS75). The plasmid pUC9-CM carrying a cat gene is also expressed in cucumber etioplasts in a manner that demonstrates dependence both on the duration of etioplast washing by EDTA and plasmid concentration. Translation (as measured by 35S-methionine incorporation) by EDTA-washed etioplasts increases with cotyledon greening. However the enhancement of translation by prior incubation of EDTA-washed plastids with pCS75 decreases to zero during 24hr of cotyledon greening. Results suggest that the expression of foreign DNA in plastids may depend critically upon their developmental state.Abbreviations AMP-PNP adenyl-5-yl imidodiphosphate - APr amplicillin resistance, cat-chloramphenicol acetyltransferase - RuBisCO ribulose bisphosphate carboxylase/oxygenase  相似文献   

17.
Benzyladenine promoted rapid accumulation of mRNAs that encodedthe small subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase(RuBisCO) and light-harvesting chlorophyll a/b protein in etiolatedcucumber cotyledons, but only after prior incubation of thecotyledons in water. However, benzyladenine hardly affectedthe level of mRNA for the large subunit of RuBisCO. 1 Present address: Shonan Junior College, Yokosuka, Kanagawa238, Japan (Received September 3, 1990; Accepted March 4, 1991)  相似文献   

18.
Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) from the halophilic cyanobacterium, Aphanothece halophytica, dissociates into catalytic core (large subunit A oligomer) and small subunit B under low ionic strength during sucrose density gradient centrifugation. Supplementation of KCl, NaCl, or K2SO4 ( [I] = 0.3 M) partly prevents the dissociation, the preventive effect of divalent cation salts such as MgCl2 and CaCl2 being more effective than monovalent cation salts. RuBisCO with its higher-plant-type molecular form can be isolated from the cyanobacterial extracts using gradient medium containing 0.3 M KCl, 20 mM MgCl2, and 10 mM CaCl2. The isolated enzyme contains large subunit A and small subunit B in a molar ratio of approximately 1:1, estimated from the densitometric scanning of Coomassie blue-stained gels. During the second sucrose density gradient centrifugation to remove minor contaminants, a small amount of subunit B is depleted from the holoenzyme. Determination of the molecular weight by equilibrium centrifugation and electron microscopic observation have confirmed that the cyanobacterial RuBisCO has an A8B8-type structure. The enzyme activity per se is found to be sensitive to concentrations of salts, and small subunit B is obligatory for the enzyme catalysis. It has been shown that the more the enzyme activity is inhibited by salts, the tighter the association of subunit B becomes. It is likely that the active enzyme retains the loose conformational structure to such an extent that the dissociable release of subunit B from the holoenzyme in vivo is not allowed.  相似文献   

19.
In our previous investigation on the genes of 1,5-ribulose bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39) in deep-sea chemoautotrophic and methanotrophic endosymbioses, the gene encoding the large subunit of RuBisCO form I (cbbL) had been detected in the gill of a mussel belonging to the genus Bathymodiolus from a western Pacific back-arc hydrothermal vent. This study further examined the symbiont source of the RuBisCO cbbL gene along with the genes of 16S ribosomal RNA (16S rDNA) and particulate methane monooxygenase (EC 1.14.13.25; pmoA) and probed for the presence of the ATP sulfurylase gene (EC 2.7.7.4; sopT). The 16S rDNA sequence analysis indicated that the mussel harbors a monospecific methanotrophic Gammaproteobacterium. This was confirmed by amplification and sequencing of the methanotrophic pmoA, while thiotrophic sopT was not amplified from the same symbiotic genome DNA. Fluorescence in situ hybridization demonstrated simultaneous occurrence of the symbiont-specific 16S rDNA, cbbL and pmoA, but not sopT, in the mussel gill. This is the first molecular and visual evidence for a methanotrophic bacterial endosymbiont that bears the RuBisCO cbbL gene relevant to autotrophic CO2 fixation.  相似文献   

20.
Summary Experiments were undertaken to characterize the cytoplasmic ribosomal proteins (r-proteins) in Chlamydomonas reinhardtii and to compare immunologically several cytoplasmic r-proteins with those of chloroplast ribosomes of this alga, Escherichia coli, and yeast. The large and small subunits of the C. reinhardtii cytoplasmic ribosomes were shown to contain, respectively, 48 and 45 r-proteins, with apparent molecular weights of 12,000–59,000. No cross-reactivity was seen between antisera made against cytoplasmic r-proteins of Chlamydomonas and chloroplast r-proteins, except in one case where an antiserum made against a large subunit r-protein cross-reacted with an r-protein of the small subunit of the chloroplast ribosome. Antisera made against one out of five small subunit r-proteins and three large subunit r-proteins recognized r-proteins from the yeast large subunit. Each of the yeast r-proteins has been previously identified as an rRNA binding protein. The antiserum to one large subunit r-protein cross-reacted with specific large subunit r-proteins from yeast and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号