首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two glycosphingolipids galactosylceramide (GalC) and its sulfated form, cerebroside sulfate (CBS), are present at high concentrations in the multilayered myelin sheath and are involved in carbohydrate-carbohydrate interactions between the lipid headgroups. In order to study the structure of the complex of these two glycolipids by Fourier transform infrared (FTIR) spectroscopy, GalC dispersions were combined with CBS dispersions in the presence and absence of Ca(2+). The FTIR spectra indicated that a strong interaction occurred between these glycolipids even in the absence of Ca(2+). The interaction resulted in dehydration of the sulfate, changes in the intermolecular hydrogen bonding interactions of the sugar and other oxygens, decreased intermolecular hydrogen bonding of the amide C==O of GalC and dehydration of the amide region of one or both of the lipids in the mixture, and disordering of the hydrocarbon chains of both lipids. The spectra also show that Ca(2+) interacts with the sulfate of CBS. Although they do not reveal which other groups of CBS and GalC interact with Ca(2+) or which groups participate in the interaction between the two lipids, they do show that the sulfate is not directly involved in interaction with GalC, since it can still bind to Ca(2+) in the mixture. The interaction between these two lipids could be either a lateral cis interaction in the same bilayer or a trans interaction between apposed bilayers. The type of interaction between the lipids, cis or trans, was investigated using fluorescent and spin-label probes and anti-glycolipid antibodies. The results confirmed a strong interaction between the GalC and the CBS microstructures. They suggested further that this interaction caused the CBS microstructures to be disrupted so that CBS formed a single bilayer around the GalC multilayered microstructures, thus sequestering GalC from the external aqueous phase. Thus the CBS and GalC interacted via a trans interaction across apposed bilayers, which resulted in dehydration of the headgroup and interface region of both lipid bilayers. The strong interaction between these lipids may be involved in stabilization of the myelin sheath.  相似文献   

2.
Differential scanning calorimetry (DSC) and X-ray diffraction have been used to study hydrated N-lignocerylgalactosylsphingosine (NLGS) bilayers. DSC of fully hydrated NLGS shows an endothermic transition at 69-70 degrees C, immediately followed by an exothermic transition at 72-73 degrees C; further heating shows a high-temperature (Tc = 82 degrees C), high-enthalpy (delta H = 15.3 kcal/mol NLGS) transition. Heating to 75 degrees C, cooling to 20 degrees C and subsequent reheating shows no transitions at 69-73 degrees C; only the high-temperature (82 degrees C), high-enthalpy (15.3 kcal/mol) transition. Two exothermic transitions are observed on cooling; for the upper transition its temperature (about 65 degrees C) and enthalpy (about 6 kcal/mol NLGS) are essentially independent of cooling rate, whereas the lower transition exhibits marked changes in both temperature (30----60 degrees C) and enthalpy (2.2----9.5 kcal/mol NLGS) as the cooling rate decreases from 40 to 0.625 Cdeg/min. On reheating, the enthalpy of the 69-70 degrees C transition is dependent on the previous cooling rate. The DSC data provide clear evidence of conversions between metastable and stable forms. X-ray diffraction data recorded at 26, 75 and 93 degrees C show clearly that NLGS bilayer phases are present at all temperatures. The X-ray diffraction pattern at 75 degrees C shows a bilayer periodicity d = 65.4 A, and a number of sharp reflections in the wide-angle region indicative of a crystalline chain packing mode. This stable bilayer form converts to a liquid-crystal bilayer phase; at 93 degrees C, the bilayer periodicity d = 59.1 A, and a diffuse reflection at 1/4.6 A-1 is observed. The diffraction pattern at 22 degrees C represents a combination of the stable and metastable low-temperature bilayer forms. NLGS exhibits a complex pattern of thermotropic changes related to conversions between metastable (gel), stable (crystalline) and liquid-crystalline bilayer phases. The structure and thermotropic properties of NLGS are compared with those of hydrated N-palmitoylgalactosylsphingosine reported previously (Ruocco, M.J., Atkinson, D., Small, D.M., Skarjune, R.P., Oldfield, E. and Shipley, G.G. (1981) Biochemistry 20, 5957-5966).  相似文献   

3.
A series of 2H NMR inversion recovery experiments in the L alpha phase of the cerebroside N-palmitoylgalactosylsphingosine (NPGS) have been performed. In these liquid crystalline lipid bilayers we have observed substantial anisotropy in the spin-lattice relaxation of the CD2 groups in the acyl chains. The form and magnitude of the anisotropy varies with position in the chain, being positive in the upper region, decreasing to zero at the 4-position, and reversing sign at the lower chain positions. It is also shown that addition of cholesterol to the bilayer results in profound changes in the anisotropy. These observations are accounted for by a simple motional model of discrete hops among nine sites, which result from the coupling of two modes of motion--long-axis rotational diffusion and gauche-trans isomerization. This model is employed in quantitative simulations of the spectral line shapes and permits determination of site populations and motional rates. These results, plus preliminary results in sphingomyelin and lecithin bilayers, illustrate the utility of T1 anisotropy measurements as a probe of dynamics in L alpha-phase bilayers.  相似文献   

4.
Fourier transform infrared spectroscopy has been used to study the stable and metastable forms of a range of cerebrosides in aqueous systems. The spectra provide evidence for different degrees of inter- and intra-molecular hydrogen bonding, involving principally the amide group, in these different states. A comparison has been made with the spectra of a cerebroside containing an alpha-hydroxyl group in the fatty acyl chain. This cerebroside does not show metastability and its hydrogen bonding characteristics are shown to be different.  相似文献   

5.
13C- and 2H-NMR experiments were used to examine the phase behavior and dynamic structures of N-palmitoylgalactosylsphingosine (NPGS) (cerebroside) and cholesterol (CHOL) in binary mixtures. 13C spectra of 13C=O-labeled and 2H spectra of [7,7-2H2] chain-labeled NPGS as well as 3 alpha-2H1 CHOL indicate that cerebroside and CHOL are immiscible in binary mixtures at temperatures less than 40 degrees C. In contrast, at 40 degrees C < t < or = T(C) (NPGS), up to 50 mol% CHOL can be incorporated into melted cerebroside bilayers. In addition, 13C and 2H spectra of melted NPGS/CHOL bilayers show a temperature and cholesterol concentration dependence. An analysis of spectra obtained from the melted 13C=O NPGS bilayer phase suggests that the planar NH-C=O group assumes an orientation tilted 40 degrees-55 degrees down from the bilayer interface. The similarity between the orientation of the amide group relative to the bilayer interface in melted bilayers and in the crystal structure of cerebroside suggests that the overall crystallographic conformation of cerebroside is preserved to a large degree in hydrated bilayers. Variation of temperature from 73 degrees to 86 degrees C and CHOL concentration from 0 to 51 mol% results in small changes in this general orientation of the amide group. 2H spectra of chain-labeled NPGS and labeled CHOL in NPGS/CHOL bilayer demonstrate that molecular exchange between the gel and liquid-gel (LG) phases is slow on the 2H time scale, and this facilitates the simulation of the two component 2H spectra of [7,7-2H2]NPGS/CHOL mixtures. Simulation parameters are used to quantitate the fractions of gel and LG cerebroside. The quadrupole splitting of [7,7-2H2]NPGS/CHOL mixtures and 2H simulations allows the LG phase bilayer fraction to be characterized as an equimolar mixture of cerebroside and CHOL.  相似文献   

6.
The metastable phase behavior of semi-synthetic species of cerebroside sulfate (CBS), with hydroxy and non-hydroxy fatty acids from 16 to 26 carbons in length, was compared in Li+ and K+ using differential scanning calorimetry. The structure of the metastable and various stable phases formed in the presence of these two cations was investigated using a fatty acid spin label, 16-doxylstearate. A number of stable phases with successively higher phase transition temperatures and enthalpies occur in the presence of K+ (see the preceding paper). Li+ prevents formation of the most stable phases with the highest transition temperatures and enthalpies for all species of CBS. However, it does not prevent a transition from the metastable phase to the first stable phase of the longer chain C24 and C26 species. Furthermore, it allows C24:0h-CBS to undergo a similar transition, in contrast to a high K+ concentration, which prevents it. The spin label has anisotropic motion in the metastable gel phase formed by all species of CBS on cooling from the liquid crystalline phase. The spectra resemble those in gel phase phospholipids. The spin label is partially insoluble in the most stable phases formed by all the lipids, including the unsaturated C24:1 species, preventing further elucidation of their structure using this technique. However, the spin label is soluble in the first stable phase formed on cooling by the longer chain C24:0 and C26:0-CBS in Li+ and K+ and by C24:0h-CBS in Li+, and is motionally restricted in this phase. The motional restriction is similar to that observed in the mixed interdigitated bilayers of asymmetric species of phosphatidylcholine and fully interdigitated bilayers formed by symmetric phospholipids. It strongly suggests that the highly asymmetric long chain species of CBS form a mixed interdigitated bilayer in their first stable gel phases while the metastable phase of these and the shorter chain lipids may be partially interdigitated. The metastable phase of C24:1-CBS is more disordered suggesting that it may not be interdigitated at all. Thus the results suggest that (i) the hydroxy fatty acid inhibits but does not prevent formation of a mixed interdigitated bilayer by long chain species of CBS, (ii) an increase in non-hydroxy fatty acid chain length from 24 to 26 carbons promotes it, and (iii) a cis double bond probably prevents any form of interdigitation. These results may be relevant to the physiological and pathological roles of these structural modifications of CBS.  相似文献   

7.
The 13C NMR chemical shifts and spin-lattice relaxation times of D-galactosylsphingosine derivatives in CDCl3-CD3OD and in egg-yolk lecithin vesicles in D2O, and of N-acetylpsychosine micelles, are reported. Results with sonicated, unilamellar vesicles containing cerebroside and EYLa show that (1) cerebrosides decrease the fluidity of the lecithin bilayer membrane and have the greatest effect on the glycerol backbone and choline methyl carbons. (2) N-acetylpsychosine experiences a greater freedom of motion in the galactose region than does cerebroside and does not reduce the fluidity of the lecithin as much as cerebroside. (3) Ac-Psy/EYL vesicles formed are permeable to Yb3+ but cerebroside/lecithin vesicles are not. (4) The choline groups on the inner bilayer surface are less mobile than those on the outer surface according to preliminary T1 measurements of the Yb3+-separated resonances. (5) Yb3+-induced chemical shifts of choline methyl and choline CH2OP peaks in mixed cerebroside-lecithin vesicle systems indicate a small preference for cerebroside in the outside monolayer. The data show that these molecules have significant effects on bilayer conformational mobilities, particularly near the surface, and thus demonstrate one mechanism for modulation of cell surface properties by glycosphingolipids.  相似文献   

8.
9.
Steric repulsion between phosphatidylcholine bilayers   总被引:12,自引:0,他引:12  
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1987,26(23):7325-7332
The change in pressure needed to bring egg phosphatidylcholine bilayers into contact from their equilibrium separation in excess water has been determined as a function of both distance between the bilayers and water content. A distinct upward break in the pressure-distance relation appears at an interbilayer separation of about 5 A, whereas no such deviation is present in the pressure-water content relation. Thus, this break is not a property of the dehydration process per se, but instead is attributed to steric repulsion between the mobile lipid head groups that extend 2-3 A into the fluid space between bilayers. That is, electron density profiles of these bilayers indicate that the observed break in the pressure-spacing relation occurs at a bilayer separation where extended head groups from apposing bilayers come into steric hindrance. The pressure-spacing data are used to separate steric pressure from the repulsive hydration pressure, as well as to quantitate the range and magnitude of the steric interaction. An appreciable fraction of the measured steric energy can be ascribed to a decrease in configurational entropy due to restricted head-group motion as adjacent bilayers come together.  相似文献   

10.
The critical micelle concentration of cerebroside sulphate in water is 0-01 mM: it increases with increasing concentrations of buffer to 0-07 mM in 0-1 M sodium acetate and formate buffers, pH 5-6 and 4-5 respectively. The partial specific volume of the micelles is about 0-94. The behaviour of the micelles in the ultracentrifuge and on Sephadex G-200 shows them to be grossly heterogeneous with respect to size. In 0-1 M buffer s20,w is about 26 S; in water or 0-01 M buffer smaller micelles with an s20,w of about 6 S are also present. In 0-01 M formate, pH 4-5, the smallest species detectable by equilibrium ultracentrifugation had a micellar weight of about 180,000 corresponding to an aggregation number of about 180. Much larger aggregates were also present. It is suggested that the smallest micelles are the substrate for sulphatase A when this is acting as a cerebroside sulphatase in buffers of low ionic strength.  相似文献   

11.
alpha-Helical transmembrane peptides, named WALP, with a hydrophobic sequence of leucine and alanine of varying length bordered at both ends by two tryptophans as membrane anchors, were synthesized to study the effect of hydrophobic matching in lipid bilayers. WALPs of 13-, 16-, and 19-residues were incorporated into 1,2-dilauroyl-sn-glycero-3-phosphocholine (12C), 1,2-tridecanoyl-sn-glycero-3-phosphocholine (13C), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (14C) bilayers in the form of oriented multilayers. Oriented circular dichroism spectra and x-ray diffraction patterns showed that the peptides were homogenously distributed in the lipid bilayers with the helical axes oriented approximately normal to the plane of bilayers. But in all cases, x-ray diffraction showed that the peptides did not alter the thickness of the bilayer. This is contrary to the case of gramicidin where 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dilauroyl-sn-glycero-3-phosphocholine clearly thinned and thickened, respectively, to approach the hydrophobic thickness of the gramicidin channels. The result seems to indicate that the packing of lipid chains around a single helix is fundamentally different from the way the chains pack against a large protein surface.  相似文献   

12.
A highly convergent synthetic approach was developed to obtain alpha-galactosyl cerebroside O-(alpha-D-galactopyranosyl)-2-hexacosylamino-D-ribo-1,3,4-octa decantriol, which has previously been demonstrated to have immunostimulatory activity. Known 4,6-O-benzylidene galactose was the starting material for both the required alpha-galactosyl and the phytosphingosine building blocks O-(2,3-di-O-benzyl-4,6-O-benzylidene-D-galactopyranosyl) trichloroacetimidate (4) and 2-O-methanesulfonyl-D-arabino-1,2,3,4-octadecantetrol (5). The key step of the synthetic strategy is the highly regio- and stereoselective O-galactosylation of 1,3,4-O-unprotected phytosphingosine acceptor 5 using known 4 as donor. The total synthesis required only 11 synthetic steps starting from galactose.  相似文献   

13.
Long-range attractive forces between lipid bilayers are not well described by the Lifshitz theory of Van der Waals forces between macroscopic media. It is shown that when correlations between polar headgroups are taken into account, the predicted forces take a qualitatively different form consistent with the measured data.  相似文献   

14.
15.
The kinetics of spontaneous transfer of various glucosyl- and galactosylceramides between 1-palmitoyl-2-oleoylphosphatidylcholine vesicles have been examined at 45 degrees C. Bovine brain galactosylceramides, kerasin and phrenosin, were found to transfer with biexponential kinetics. The kerasin fast pool is approximately 17% with a half-time of 29 h and the slow pool approximately 83% with a half-time of 2700 h. In contrast, semisynthetic N-palmitoylgalactosylceramide at the same temperature transfers with single-exponential kinetics with a half-time of 32 h. The half-time for N-lignoceroylgalactosylceramide under the same conditions proved to be greater than 3500 h. No concentration dependence for these half-times was found in the concentration range studied (0-10 mol%). Similar results were obtained for semisynthetic glucosylceramides. The biexponential kinetics observed for the two bovine brain ceramides, both of which are mixtures of short and long acyl chain molecules, are most probably a reflection of the strong dependence of transfer rate on acyl chain length. The very slow transfer rates of the long acyl chain hexosylceramides ensure that these molecules are lost very slowly, if at all, by spontaneous transfer from the external surface of plasma membranes; a result that is consistent with the putative biological role of glycosphingolipids.  相似文献   

16.
17.
A technique was developed to isolate sufficient material for compositional analysis of cerebroside from pooled human cerebrospinal fluid. The carbohydrate moiety was principally galactose. The sphingosine base and fatty acid compositions were found to be similar to that of brain cerebroside. The presence of a contaminant in commercial silica gel which chromatographed like the trimethylsilyl derivative of glucose is described.  相似文献   

18.
Galactosyl ceramide 3-sulphate (cerebroside 3-sulphate) was tritiated using [3H]NaBH4 with PdCl2 as catalyst. Quantitative purification of the three components of the product was achieved by chromatography on Florisil. Dispersions, prepared by either low energy sonication or by dilution from organic solvent, were compared by controlled pore glass chromatography, ultra-centrifugation and electron microscopy. Both dispersion techniques were shown to form unilamellar vesicles, the average size of vesicles produced by sonication being far larger than those produced by solvent dilution. The diameter of isolated vesicles produced by solvent dilution was in the range 10–80 nm.  相似文献   

19.
Measurement and modification of forces between lecithin bilayers.   总被引:7,自引:8,他引:7       下载免费PDF全文
We probe in two different ways the competing attractive and repulsive forces that create lamellar arrays of the phospholipid lecithin when in equilibrium with pure water. The first probe involves the addition of low molecular weight solutes, glucose and sucrose, to a system where the phospholipid is immersed in a large excess of water. Small solutes can enter the aqueous region between bilayers. Their effect is first to increase and then to decrease the separation between bilayers as sugar concentration increases. We interpret this waxing and waning of the lattice spacing in terms of the successive weakening and strengthening of the attractive van der Waals forces originally responsible for creation of a stable lattice. The second probe is an "osmotic stress method," in which very high molecular weight neutral polymer is added to the pure water phase but is unable to enter the multilayers. The polymer competes for water with the lamellar lattice, and thereby compresses it. From the resulting spacing (determined by X-ray diffraction) and the directly measured osmotic pressure, we find a force vs. distance curve for compressing the lattice (or, equivalently, the free energy of transfer to bulk water of water between bilayers. This method reveals a very strong, exponentially varying "hydration force" with a decay distance of about 2 A.  相似文献   

20.
J D Jones  T E Thompson 《Biochemistry》1990,29(6):1593-1600
We have previously demonstrated that spontaneous phospholipid transfer between bilayer vesicles at higher vesicle concentrations is characterized not only by a first-order desorption rate but also by a second-order process dependent on vesicle concentration (Jones & Thompson, 1989b). We have extended our studies to examine the mechanism of this second-order process by investigating transfer as a function of lipid type, temperature, aqueous medium composition, and vesicle size. The results suggest a mechanism of concentration-dependent transfer in which the rate of lipid monomer desorption from vesicle bilayers is enhanced in transient vesicle-vesicle complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号