首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glutamate dehydrogenase (GDH) activity was studied in 17 regions of six human brains. Duration and conditions of the postmortem period did not affect enzyme activity. Specific activity ranged between 103 and 377 nmoles/min/mg protein at 25 degrees C and it was 10-fold higher than that found in leukocytes. Apart from exclusively white matter regions (corpus callosum and centrum ovale), there was a moderate regional distribution (2.5-fold variation), with highest values in the inferior olive and hypothalamus, and lowest in the cerebellum and lenticular nucleus. With alpha-ketoglutarate (alpha-KG), NADH, or NH4+ as variable substrate, the apparent Km values in human brain were Km alpha-KG = 1.9 X 10(-3) M, KmNADH = 0.21 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M, and in leukocytes they were Km alpha-KG = 1.7 X 10(-3) M, KmNADH = 0.24 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M. The effects of cofactors, inhibitor, and pH were similar in brain and leukocyte GDH.  相似文献   

2.
Abstract: Glutamate dehydrogenase (GDH), an enzyme that is central to the metabolism of glutamate, is present at high levels in the mammalian brain. Studies on human leukocytes and rat brain suggested the presence of two GDH activities differing in thermal stability and allosteric regulation, but molecular biological investigations led to the cloning of two human GDH-specific genes encoding highly homologous polypeptides. The first gene, designated GLUD1, is expressed in all tissues (housekeeping GDH), whereas the second gene, designated GLUD2, is expressed specifically in neural and testicular tissues. In this study, we obtained both GDH isoenzymes in pure form by expressing a GLUD1 cDNA and a GLUD2 cDNA in Sf9 cells and studied their properties. The enzymes generated showed comparable catalytic properties when fully activated by 1 mM ADP. However, in the absence of ADP, the nerve tissue-specific GDH showed only 5% of its maximal activity, compared with ~40% showed by the housekeeping enzyme. Low physiological levels of ADP (0.05–0.25 mM) induced a concentration-dependent enhancement of enzyme activity that was proportionally greater for the nerve tissue GDH (by 550–1,300%) than of the housekeeping enzyme (by 120–150%). Magnesium chloride (1–2 mM) inhibited the nonactivated housekeeping GDH (by 45–64%); this inhibition was reversed almost completely by ADP. In contrast, Mg2+ did not affect the nonstimulated nerve tissue-specific GDH, although the cation prevented much of the allosteric activation of the enzyme at low ADP levels (0.05–0.25 mM). Heat-inactivation experiments revealed that the half-life of the housekeeping and nerve tissue-specific GDH was 3.5 and 0.5 h, respectively. Hence, the nerve tissue-specific GDH is relatively thermolabile and has evolved into a highly regulated enzyme. These allosteric properties may be of importance for regulating brain glutamate fluxes in vivo under changing energy demands.  相似文献   

3.
Abstract: Two human brain surgery biopsies and one autopsy sample were subjected to subcellular fractionation. With either 0.12 or 6 mM-acetaldehyde as substrate, about half of the total aldehyde dehydrogenase activity was found in the mitochondrial (+ synaptosomal) fraction and less activity in the cytosolic, nuclear, and microsomal fractions. High-affinity activity was found only in the mitochondrial fraction. The enzyme in all fractions had a higher affinity for indole-3-acetaldehyde than for acetaldehyde. The kinetic data indicate the presence of several distinct aldehyde dehydrogenase isozymes that have ample capacity to oxidize both aliphatic and aromatic aldehydes in human brain.  相似文献   

4.
Abstract: Two soluble forms of bovine brain glutamate dehydrogenase (GDH) isoproteins were inactivated by pyridoxal 5'-phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through Schiff's base formation with amino groups of the enzyme. Sodium borohydride reduction of the pyridoxal 5'-phosphate-inactivated GDH isoproteins produced a stable pyridoxyl enzyme derivative that could not be reactivated by dialysis. The pyridoxyl enzyme was studied through fluorescence spectroscopy. No substrates or coenzymes separately gave complete protection against pyridoxal 5'-phosphate. A combination of 10 m M 2-oxoglutarate with 2 m M NADH, however, gave complete protection against the inactivation. Tryptic peptides of the isoproteins, modified with and without protection, resulted in a selective modification of one lysine. In both GDH isoproteins, the sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other GDH species.  相似文献   

5.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released.  相似文献   

6.
Glutamate dehydrogenase (GDH) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates after removal of a low-speed pellet (480 g for 10 min). Approximately 60% of the high-speed GDH activity was particulate (associated with membrane) and the remaining was soluble (probably of mitochondrial matrix origin). Most of the particulate GDH activity resisted extraction by several commonly used detergents, high concentration of salt, and sonication; however, it was largely extractable with the cationic detergent cetyltrimethylammonium bromide (CTAB) in hypotonic buffer solution. The two GDH activities were purified using a combination of hydrophobic interaction, ion exchange, and hydroxyapatite chromatography. Throughout these purification steps the two activities showed similar behavior. Kinetic studies indicated similar Km values for the two GDH fractions for the substrates alpha-ketoglutarate, ammonia, and glutamate; however, there were small but significant differences in Km values for NADH and NADPH. Although the allosteric stimulation by ADP and L-leucine and inhibition by diethylstilbestrol was comparable, the two GDH components differed significantly in their susceptibility to GTP inhibition in the presence of 1 mM ADP, with apparent Ki values of 18.5 and 9.0 microM GTP for the soluble and particulate fractions, respectively. The Hill plot coefficient, binding constant, and cooperativity index for the GTP inhibition were also significantly different, indicating that the two GDH activities differ in their allosteric sites. In addition, enzyme activities of the two purified proteins exhibited a significant difference in thermal stability when inactivated at 45 degrees C and pH 7.4 in 50 mM phosphate buffer.  相似文献   

7.
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo.  相似文献   

8.
To improve yield and productivity of ketose in NAD-dependent polyol oxidations, two enzymatic methods for regeneration of the oxidized coenzyme form have been compared and partly optimized for the batch conversion of xylitol into D-xylulose and D-sorbitol into D-fructose. Polyol oxidation was catalyzed by xylitol dehydrogenase from the yeast Galactocandida mastotermitis. Reduction of OM2 (apparently to H2O) by partially purified NADH dehydrogenase complex from Corynebacterium callunae could drive alcohol oxidations better than reductive amination of EaL-ketoglutarate by glutamate dehydrogenase. A fed-batch procedure was developed that overcame inhibition of glutamate dehydrogenase by α-ketoglutarate (Kis 25 mM), thus increasing the productivity of ketose almost 2-fold. For D-fructose production from D-sorbitol (0.1-0.3M) yields of < 90% and productivities up to 1.30g/(L.h) have been obtained. High conversion of up to 50g/L xylitol into D-xylulose for which xylitol dehydrogenase exhibits an about 80-fold higher specificity constant than for D-fructose required complexation of the ketose product with borate. In comparison with reductive amination by glutamate dehydrogenase, advantages of using NADH-dehydrogenase catalyzed regeneration of NAD for ketose production are (i) avoidance of byproduct formation, (ii) cheaper substrate (02 versus α-ketoglutarate), and (iii) easier process control (batch versus fed-batch).  相似文献   

9.
Abstract: Magnesium and the polyamines putrescine, spermidine, and spermine inhibited the activity of glutamate dehydrogenase in permeabilized rat brain mitochondria in a concentration-dependent manner. The inhibitory effect was observed on both the reductive amination of 2-oxoglutarate and oxidative deamination of glutamate, as well as in the presence and absence of ADP and leucine, the allosteric activators of the enzyme. Kinetic studies at various concentrations of substrates showed that inhibition by magnesium and spermine was very pronounced at 2-oxoglutarate concentrations less than 0.5 m M and NADH levels less than 0.08 m M . The presence of the former compounds also accentuated the inhibitory effect of high concentrations of 2-oxoglutarate (>2.0 m M ) and NADH (>0.32 m M ). Addition of magnesium and spermine to suspensions of synaptosomes decreased the amount of ammonia produced from glutamate. It is suggested that polyamines and magnesium, normal constituents of mammalian brain, are responsible, at least in part, for the low glutamate dehydrogenase activity in vivo.  相似文献   

10.
11.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate.  相似文献   

12.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

13.
玉米苹果酸脱氢酶基因的分离与结构分析   总被引:9,自引:0,他引:9  
以一个玉米(ZeamaysL.)杂种一代超亲表达的cDNA片段为探针,从玉米幼苗期cDNA文库中筛选到一个全长1287bp的cDNA克隆。序列分析表明,该cDNA编码细胞质苹果酸脱氢酶,推导的氨基酸序列与龙须海棠(Mesembryanthemum crystallium L.)及拟南芥(Arabidopsis thaliana(L.)Heynh.)同一编码基因的氨基酸序列同源性分别为90%和84%。这是禾谷类作物中首次克隆的编码细胞质苹果酸脱氢酶的完整基因。  相似文献   

14.
谷氨酸脱氢酶 (GDH)是谷氨酸生物合成的关键酶 ,谷氨酸棒杆菌S91 1 4是目前我国味精工业应用最广泛的生产菌种 ,其谷氨酸脱氢酶的研究尚未见报道。分离纯化该菌中的谷氨酸脱氢酶 ,研究其辅酶组成 ,对揭示谷氨酸脱氢酶的分子结构和性质 ,提高谷氨酸产率很有必要。将培养至对数期中期的细胞离心收集并用含适量DTT、ED TA的Tris_HCl缓冲液 (pH 7 5 )洗涤 ,用Frenchpressurecellpress破碎 ,离心去除菌体碎片得无细胞抽提液。然后使用 KTA_10 0快速纯化系统经DEAE_纤维素柱、疏水柱 (HIC)、G_2 0 0凝胶过滤柱层析得到纯化大约 70倍的以NAD PH为辅酶的GDH和部分纯化的以NADH辅酶的GDH。这两个酶分别对NADPH、NADH高度专一 ,不能相互代替。经HPLC和SDS_PAGE测得前一种酶的分子量和亚基分子量分别为 188kD和 32kD ,表明该酶为具有相同亚基的六聚体。酶活性测定使用HITACHIU_30 0 0分光光度计利用NAD(P)H在 340nm氧化的初速度进行。蛋白质含量测定利用Bradford方法进行 ,并以牛血清白蛋白为标准蛋白。纯化结果表明S91 1 4中确实存在两种GDH ,其中以NADH为辅酶的GDH尚未见报道。和某些具有两种GDH的微生物一样 ,S91 1 4可能也是以NADPH为辅酶的GDH参与谷氨酸的合成代谢 ,以NADH为辅酶的GDH参与谷氨酸的分解代谢。  相似文献   

15.
Abstract: Antibodies against the purified bovine brain glutamate binding protein (GBP) were raised in rabbits. Both nonderivatized and dinitrobenzene-derivatized GBP produced strong immunological responses in rabbits. Using the enzyme-linked immunosorbent assay (ELISA), we have quantified the antibody production and determined the specificity of the antibodies. Bovine brain GBP and the analogous protein from rat brain interacted most strongly with the antibodies. A bacterial glutamate-aspartate binding protein, as well as the enzymes glutamate dehydrogenase (EC 1.4.1.3), glutamine synthetase (EC 6.3.1.2), and γ-glutamyl transpeptidase (EC 2.3.2.2), showed little or no cross-reactivity with the anti-GBP antibodies. A crude bacterial glutamate decarboxylase (EC 4.1.1.15) preparation gave a small to moderate cross-reaction with the anti-GBP antibodies. The sensitivity of the ELISA assay and the specificity of the antibodies were such that GBP levels as low as 3–10 ng could be detected.  相似文献   

16.
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   

17.
Effects of Dichloroacetate on Brain Pyruvate Dehydrogenase   总被引:3,自引:1,他引:3  
The action of dichloroacetate (DCA) on pyruvate dehydrogenase (PDH) activity of rat brain has been studied in vitro and in vivo. In a crude brain mitochondrial fraction, DCA inhibits PDH kinase and in rat brain slices this compound increases PDH activity and stimulates glucose oxidation. In the whole animal, intraperitoneal injection of DCA causes activation of brain PDH, indicating that this inhibitor crosses the blood-brain barrier. The same treatment with DCA also produced a large increase in heart PDH activity. Further studies of the effects of DCA on the CNS should lead to results of considerable importance.  相似文献   

18.
In human foetal brain ontogeny the cerebral activity of succinate oxidoreductase (EC 1.3.99.1), i.e. succinate dehydrogenase (SDH), is higher than the cerebellar activity. With rise in foetal body weight the activity in all the brain regions gradually declines. SDH in all the brain regions shows two high-activity periods, one at 20-35 g and another at 110-220 g body weight. The enzyme exhibits a craniocaudal pattern of development. At all times of gestation, L-glutamate:ammonia ligase (EC 6.3.1.2), i.e. glutamine synthetase, activity in the spinal cord and medulla is higher than in the other three regions. At 190 g body weight glutamine synthetase shows an activity peak in all brain regions. Monoamine:oxygen oxidoreductase (EC 1.4.3.4). i.e. monoamine oxidase (MAO), is present much before the onset of electrical activity. It develops caudocranially and exhibits a biphasic pattern of development in all the regions. It increases considerably in the medulla and the spinal core towards late gestational periods.  相似文献   

19.
The binding of L-[3H]glutamate to membranes from human temporal cortex was studied in the absence of Na+, Ca2+, and Cl- ions. Pharmacological characterisation revealed that approximately 35% of specific binding at 50 nM L-[3H]glutamate was sensitive to a combination of kainate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. The remaining approximately 65% of specific binding was to a single population of sites with a KD of 844 nM and a Bmax of 0.92 pmol/mg protein. The pharmacological characteristics were consistent with an interaction at the N-methyl-D-aspartate subclass of excitatory amino acid receptor. The inclusion of Cl- ions revealed additional glutamate binding; this was sensitive to quisqualate and DL-2-amino-4-phosphonobutyrate, but not to kainate, DL-2-amino-7-phosphonoheptanoate, or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid.  相似文献   

20.
4-Aminobutyraldehyde Dehydrogenase Activity in Rat Brain   总被引:2,自引:2,他引:2  
Abstract: An enzyme with NAD+-dependent 4-aminobutyraldehyde dehydrogenase activity was purified about 360-fold from rat brain extract. AMP-Sepharose chromatography was effective in separating the enzyme from other NAD+-dependent aldehyde dehydrogenases included in the extract. The K ms for the substrates NAD+ and 4-aminobutyraldehyde were 4.8 × 10−4 and 8.3 × 10−5 M , respectively. The pH optimum for the enzyme was about 8.0. The ratio of activities toward 4-aminobutyraldehyde, propionaldehyde, succinate semialdehyde, and benzaldehyde was 1.00:0.17:0.24:0.09:0.03 when the activity toward 4-aminobutyraldehyde was set equal to 1.00. The enzyme activity in subcellular fractions of rat brain was localized in cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号