共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Filla G. De Michele V. Brescia Morra V. Palma A. Di Lauro G. Di Geronimo G. Campanella 《Journal of neurochemistry》1986,46(2):422-424
Glutamate dehydrogenase (GDH) activity was studied in 17 regions of six human brains. Duration and conditions of the postmortem period did not affect enzyme activity. Specific activity ranged between 103 and 377 nmoles/min/mg protein at 25 degrees C and it was 10-fold higher than that found in leukocytes. Apart from exclusively white matter regions (corpus callosum and centrum ovale), there was a moderate regional distribution (2.5-fold variation), with highest values in the inferior olive and hypothalamus, and lowest in the cerebellum and lenticular nucleus. With alpha-ketoglutarate (alpha-KG), NADH, or NH4+ as variable substrate, the apparent Km values in human brain were Km alpha-KG = 1.9 X 10(-3) M, KmNADH = 0.21 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M, and in leukocytes they were Km alpha-KG = 1.7 X 10(-3) M, KmNADH = 0.24 X 10(-3) M, and KmNH4+ = 28 X 10(-3) M. The effects of cofactors, inhibitor, and pH were similar in brain and leukocyte GDH. 相似文献
2.
Nerve Tissue-Specific Human Glutamate Dehydrogenase that Is Thermolabile and Highly Regulated by ADP 总被引:1,自引:1,他引:0
P. Shashidharan †Donald D. Clarke Naveed Ahmed ‡Nicholas Moschonas § Andreas Plaitakis 《Journal of neurochemistry》1997,68(5):1804-1811
Abstract: Glutamate dehydrogenase (GDH), an enzyme that is central to the metabolism of glutamate, is present at high levels in the mammalian brain. Studies on human leukocytes and rat brain suggested the presence of two GDH activities differing in thermal stability and allosteric regulation, but molecular biological investigations led to the cloning of two human GDH-specific genes encoding highly homologous polypeptides. The first gene, designated GLUD1, is expressed in all tissues (housekeeping GDH), whereas the second gene, designated GLUD2, is expressed specifically in neural and testicular tissues. In this study, we obtained both GDH isoenzymes in pure form by expressing a GLUD1 cDNA and a GLUD2 cDNA in Sf9 cells and studied their properties. The enzymes generated showed comparable catalytic properties when fully activated by 1 mM ADP. However, in the absence of ADP, the nerve tissue-specific GDH showed only 5% of its maximal activity, compared with ~40% showed by the housekeeping enzyme. Low physiological levels of ADP (0.05–0.25 mM) induced a concentration-dependent enhancement of enzyme activity that was proportionally greater for the nerve tissue GDH (by 550–1,300%) than of the housekeeping enzyme (by 120–150%). Magnesium chloride (1–2 mM) inhibited the nonactivated housekeeping GDH (by 45–64%); this inhibition was reversed almost completely by ADP. In contrast, Mg2+ did not affect the nonstimulated nerve tissue-specific GDH, although the cation prevented much of the allosteric activation of the enzyme at low ADP levels (0.05–0.25 mM). Heat-inactivation experiments revealed that the half-life of the housekeeping and nerve tissue-specific GDH was 3.5 and 0.5 h, respectively. Hence, the nerve tissue-specific GDH is relatively thermolabile and has evolved into a highly regulated enzyme. These allosteric properties may be of importance for regulating brain glutamate fluxes in vivo under changing energy demands. 相似文献
3.
Abstract: Two human brain surgery biopsies and one autopsy sample were subjected to subcellular fractionation. With either 0.12 or 6 mM-acetaldehyde as substrate, about half of the total aldehyde dehydrogenase activity was found in the mitochondrial (+ synaptosomal) fraction and less activity in the cytosolic, nuclear, and microsomal fractions. High-affinity activity was found only in the mitochondrial fraction. The enzyme in all fractions had a higher affinity for indole-3-acetaldehyde than for acetaldehyde. The kinetic data indicate the presence of several distinct aldehyde dehydrogenase isozymes that have ample capacity to oxidize both aliphatic and aromatic aldehydes in human brain. 相似文献
4.
Regional Development of Glutamate Dehydrogenase in the at Brain 总被引:1,自引:0,他引:1
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant. 相似文献
5.
Seong Who Kim Jongweon Lee Min-Sun Song Soo Young Choi Sung-Woo Cho 《Journal of neurochemistry》1997,69(1):418-422
Abstract: Two soluble forms of bovine brain glutamate dehydrogenase (GDH) isoproteins were inactivated by pyridoxal 5'-phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through Schiff's base formation with amino groups of the enzyme. Sodium borohydride reduction of the pyridoxal 5'-phosphate-inactivated GDH isoproteins produced a stable pyridoxyl enzyme derivative that could not be reactivated by dialysis. The pyridoxyl enzyme was studied through fluorescence spectroscopy. No substrates or coenzymes separately gave complete protection against pyridoxal 5'-phosphate. A combination of 10 m M 2-oxoglutarate with 2 m M NADH, however, gave complete protection against the inactivation. Tryptic peptides of the isoproteins, modified with and without protection, resulted in a selective modification of one lysine. In both GDH isoproteins, the sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other GDH species. 相似文献
6.
6-Phosphogluconate dehydrogenase has been purified from human brain to a specific activity of 22.8 U/mg protein. The molecular weight was 90,000. At low ionic strengths enzyme activity increased, due to an increase in Vmax and a decrease in Km for 6-phosphogluconate, and activity subsequently decreased as the ionic strength was increased (above 0.12). Both 6-phosphogluconate and NADP+ provided good protection against thermal inactivation, with 6-phosphogluconate also providing considerable protection against loss of activity caused by p-chloromercuribenzoate and iodoacetamide. Initial velocity studies indicated the enzyme mechanism was sequential. NADPH was a competitive inhibitor with respect to NADP+, and the Ki values for this inhibition were dependent on the concentration of 6-phosphogluconate. Product inhibition by NADPH was noncompetitive when 6-phosphogluconate was the variable substrate, whereas inhibition by the products CO2 and ribulose 5-phosphogluconate and NADP+ were varied. In totality these data suggest that binding of substrates to the enzyme is random. CO2 and ribulose 5-phosphate are released from the enzyme in random order with NADPH as the last product released. 相似文献
7.
Purification and Characterization of a Soluble and a Particulate Glutamate Dehydrogenase from Rat Brain 总被引:3,自引:4,他引:3
Arlene D. Colon reas Plaitakis Antonis Perakis Soll Berl Donald D. Clarke 《Journal of neurochemistry》1986,46(6):1811-1819
Glutamate dehydrogenase (GDH) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates after removal of a low-speed pellet (480 g for 10 min). Approximately 60% of the high-speed GDH activity was particulate (associated with membrane) and the remaining was soluble (probably of mitochondrial matrix origin). Most of the particulate GDH activity resisted extraction by several commonly used detergents, high concentration of salt, and sonication; however, it was largely extractable with the cationic detergent cetyltrimethylammonium bromide (CTAB) in hypotonic buffer solution. The two GDH activities were purified using a combination of hydrophobic interaction, ion exchange, and hydroxyapatite chromatography. Throughout these purification steps the two activities showed similar behavior. Kinetic studies indicated similar Km values for the two GDH fractions for the substrates alpha-ketoglutarate, ammonia, and glutamate; however, there were small but significant differences in Km values for NADH and NADPH. Although the allosteric stimulation by ADP and L-leucine and inhibition by diethylstilbestrol was comparable, the two GDH components differed significantly in their susceptibility to GTP inhibition in the presence of 1 mM ADP, with apparent Ki values of 18.5 and 9.0 microM GTP for the soluble and particulate fractions, respectively. The Hill plot coefficient, binding constant, and cooperativity index for the GTP inhibition were also significantly different, indicating that the two GDH activities differ in their allosteric sites. In addition, enzyme activities of the two purified proteins exhibited a significant difference in thermal stability when inactivated at 45 degrees C and pH 7.4 in 50 mM phosphate buffer. 相似文献
8.
Activation of Glutamate Dehydrogenase by Leucine and Its Nonmetabolizable Analogue in Rat Brain Synaptosomes 总被引:1,自引:3,他引:1
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo. 相似文献
9.
用 m RNA差异显示 PCR技术 ,从人 1 8周、2 2周胎儿脑和肝肾组织的 m RNA逆转录产物得到一些特异性显示的片段 .其中一个随机片段 GC1 0 2作为探针 ,从本实验室构建的 1 8周胎儿脑c DNA基因文库进行杂交筛选 ,得到一个阳性克隆λ gt1 0 /GC1 0 2 .该克隆内插入的 c DNA片段长2 .9kb,经过 DNA测序 ,显示具有一个开放阅读框架 ,编码 1 37个氨基酸的肽链 .用蛋白质结构的建模软件预测了该肽链的立体结构初步模型 . 相似文献
10.
首先构建了5株表达NADH依赖型谷氨酸脱氢酶的大肠杆菌基因工程菌,获得来源于Amphibacillus xylanus的谷氨酸脱氢酶AxyGDH。其最适温度为60℃、最适p H为8.0,该条件下比酶活达到(903.1±24.6)U/mg,酶活半衰期为167h。其次,确定了表达AxyGDH的大肠杆菌基因工程菌E.coli BL21(DE3)/pET-28a(+)-AxyGDH的产酶条件:诱导剂IPTG浓度为0.7mmol/L、诱导温度为25℃;优化后的培养基组成为:甘油11.3g/L,酵母粉16.3g/L,Mg SO_4·7H_2O 0.62g/L,NaCl 0.5g/L,Na_2HPO_4·12H_2O 17.1g/L,KH_2PO_43g/L,NH_4Cl 1.5g/L。最后,在10L发酵罐中控制比生长速率为0.2h~(-1)进行补料分批发酵,所得AxyGDH的发酵酶活为(9 066±45)U/ml,是LB摇瓶发酵酶活的51.1倍,为谷氨酸脱氢酶的低成本生产奠定了基础。 相似文献
11.
《Biocatalysis and Biotransformation》2013,31(5):333-349
To improve yield and productivity of ketose in NAD-dependent polyol oxidations, two enzymatic methods for regeneration of the oxidized coenzyme form have been compared and partly optimized for the batch conversion of xylitol into D-xylulose and D-sorbitol into D-fructose. Polyol oxidation was catalyzed by xylitol dehydrogenase from the yeast Galactocandida mastotermitis. Reduction of OM2 (apparently to H2O) by partially purified NADH dehydrogenase complex from Corynebacterium callunae could drive alcohol oxidations better than reductive amination of EaL-ketoglutarate by glutamate dehydrogenase. A fed-batch procedure was developed that overcame inhibition of glutamate dehydrogenase by α-ketoglutarate (Kis 25 mM), thus increasing the productivity of ketose almost 2-fold. For D-fructose production from D-sorbitol (0.1-0.3M) yields of < 90% and productivities up to 1.30g/(L.h) have been obtained. High conversion of up to 50g/L xylitol into D-xylulose for which xylitol dehydrogenase exhibits an about 80-fold higher specificity constant than for D-fructose required complexation of the ketose product with borate. In comparison with reductive amination by glutamate dehydrogenase, advantages of using NADH-dehydrogenase catalyzed regeneration of NAD for ketose production are (i) avoidance of byproduct formation, (ii) cheaper substrate (02 versus α-ketoglutarate), and (iii) easier process control (batch versus fed-batch). 相似文献
12.
利用PCR技术从黄色短杆菌GDK-9的基因组DNA中扩增出谷氨酸脱氢酶基因(gdh)片段(EC.1.4.1.4), 连到pUCm-T载体上测序。核酸序列分析结果表明, 该片段全长1927 bp, 包含一个ORF, 推测此ORF区编码一条448个氨基酸的多肽, 分子量约为48 kD。与已报道的gdh序列相似性为99.55%, 其中1190位碱基(C→A)突变导致了编码氨基酸的变化(Thr→Asn), 其它的碱基变化不影响编码的氨基酸。将gdh基因克隆入穿梭质粒pXMJ19中, 并转化E. coli XL-Blue和Brevibacterium flavum GDK-9, 经IPTG诱导后, SDS-PAGE电泳结果显示, 在预计位置出现明显的诱导蛋白条带, 分子量约为48.7 kD。谷氨酸发酵实验表明, 尽管谷氨酸脱氢酶GDH能明显提高胞内的谷氨酸含量, 但其不影响谷氨酸的分泌。 相似文献
13.
类产碱假单胞菌谷氨酸脱氢酶的提纯、鉴定及某些特性的初步研究 总被引:2,自引:0,他引:2
从类产碱假单胞菌纯化出电泳纯的谷氨酸脱氢酶,用聚丙烯酰胺梯度凝胶电泳和SDS-聚丙烯酰胺凝胶电泳测得分子量为290 kD,亚基分子量为47 kD,提示该酶为六聚体.该酶对NADP(H)和底物均具有高度专一性,对谷氨酸、α-酮戊二酸及NADP+ 的Km 值分别为:28 m m ol/L、1.2m m ol/L及0.063 m m ol/L.用Hill作图法求得酶对NH+4 和NADPH 的[S]0.5分别为24 m m ol/L和0.037 m m ol/L.最适反应温度为50℃,催化氨化反应和脱氨反应的最适pH 分别为8.0和8.8,在热稳定性方面不及嗜热细菌的谷氨酸脱氢酶稳定.提纯的谷氨酸脱氢酶在低温(4℃)条件下,可在Tris-HCl缓冲液中贮存半年以上,活力无明显下降,冷冻则可导致纯酶液迅速失活.氮源对菌体谷氨酸脱氢酶水平有显著影响. 相似文献
14.
Abstract: Magnesium and the polyamines putrescine, spermidine, and spermine inhibited the activity of glutamate dehydrogenase in permeabilized rat brain mitochondria in a concentration-dependent manner. The inhibitory effect was observed on both the reductive amination of 2-oxoglutarate and oxidative deamination of glutamate, as well as in the presence and absence of ADP and leucine, the allosteric activators of the enzyme. Kinetic studies at various concentrations of substrates showed that inhibition by magnesium and spermine was very pronounced at 2-oxoglutarate concentrations less than 0.5 m M and NADH levels less than 0.08 m M . The presence of the former compounds also accentuated the inhibitory effect of high concentrations of 2-oxoglutarate (>2.0 m M ) and NADH (>0.32 m M ). Addition of magnesium and spermine to suspensions of synaptosomes decreased the amount of ammonia produced from glutamate. It is suggested that polyamines and magnesium, normal constituents of mammalian brain, are responsible, at least in part, for the low glutamate dehydrogenase activity in vivo. 相似文献
15.
16.
Immunocytochemical Characterization of Glutamate Dehydrogenase in the Cerebellum of the Rat 总被引:2,自引:3,他引:2
R. J. Wenthold R. A. Altschuler K. K. Skaggs K. A. Reeks 《Journal of neurochemistry》1987,48(2):636-643
The immunocytochemical distribution of glutamate dehydrogenase was studied in the cerebellum of the rat using antibodies made in rabbit and guinea pig against antigen purified from bovine liver. Antiserum was found to block partially enzymatic activity both of the purified enzyme and of extracts of the rat cerebellum. Using immunoblots of proteins of rat cerebellum, a major immunoreactive protein and several minor immunoreactive proteins were detected with antiserum. Only a single immunoreactive protein was detected using affinity-purified antibody preparations. This protein migrates with a molecular weight identical to that of the subunit of glutamate dehydrogenase. Further evidence that the antibodies were selective for glutamate dehydrogenase in rat cerebellum was obtained through peptide mapping. Purified glutamate dehydrogenase and the immunoreactive protein from rat cerebellum generated similar patterns of immunoreactive peptides. No significant cross-reaction was observed with glutamine synthetase. Immunocytochemistry was done on cryostat- and Vibratome-cut sections of the cerebellum of rats that had been perfused with cold 4% paraformaldehyde. Glial cells were found to be the most immunoreactive structures throughout the cerebellum. Most apparent was the intense labeling of Bergmann glial cell bodies and fibers. In the granule cell layer, heavy labeling of astrocytes was seen. Purkinje and granule cell bodies were only lightly immunoreactive, whereas stellate, basket, and Golgi cells were unlabeled. Labeling of presynaptic terminals was not apparent. These findings suggest that glutamate dehydrogenase, like glutamine synthetase, is enriched in glia relative to neurons. 相似文献
17.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate. 相似文献
18.
Jacques-Andre Maring Richard A. Deitrich Roger Little 《Journal of neurochemistry》1985,45(6):1903-1910
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes. 相似文献
19.
玉米苹果酸脱氢酶基因的分离与结构分析 总被引:9,自引:0,他引:9
以一个玉米(ZeamaysL.)杂种一代超亲表达的cDNA片段为探针,从玉米幼苗期cDNA文库中筛选到一个全长1287bp的cDNA克隆。序列分析表明,该cDNA编码细胞质苹果酸脱氢酶,推导的氨基酸序列与龙须海棠(Mesembryanthemum crystallium L.)及拟南芥(Arabidopsis thaliana(L.)Heynh.)同一编码基因的氨基酸序列同源性分别为90%和84%。这是禾谷类作物中首次克隆的编码细胞质苹果酸脱氢酶的完整基因。 相似文献
20.
谷氨酸脱氢酶 (GDH)是谷氨酸生物合成的关键酶 ,谷氨酸棒杆菌S91 1 4是目前我国味精工业应用最广泛的生产菌种 ,其谷氨酸脱氢酶的研究尚未见报道。分离纯化该菌中的谷氨酸脱氢酶 ,研究其辅酶组成 ,对揭示谷氨酸脱氢酶的分子结构和性质 ,提高谷氨酸产率很有必要。将培养至对数期中期的细胞离心收集并用含适量DTT、ED TA的Tris_HCl缓冲液 (pH 7 5 )洗涤 ,用Frenchpressurecellpress破碎 ,离心去除菌体碎片得无细胞抽提液。然后使用 KTA_10 0快速纯化系统经DEAE_纤维素柱、疏水柱 (HIC)、G_2 0 0凝胶过滤柱层析得到纯化大约 70倍的以NAD PH为辅酶的GDH和部分纯化的以NADH辅酶的GDH。这两个酶分别对NADPH、NADH高度专一 ,不能相互代替。经HPLC和SDS_PAGE测得前一种酶的分子量和亚基分子量分别为 188kD和 32kD ,表明该酶为具有相同亚基的六聚体。酶活性测定使用HITACHIU_30 0 0分光光度计利用NAD(P)H在 340nm氧化的初速度进行。蛋白质含量测定利用Bradford方法进行 ,并以牛血清白蛋白为标准蛋白。纯化结果表明S91 1 4中确实存在两种GDH ,其中以NADH为辅酶的GDH尚未见报道。和某些具有两种GDH的微生物一样 ,S91 1 4可能也是以NADPH为辅酶的GDH参与谷氨酸的合成代谢 ,以NADH为辅酶的GDH参与谷氨酸的分解代谢。 相似文献