首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of enzymes associated with xenobiotic metabolism and or oxidative processes, and the levels of aromatic DNA adducts, have been determined in the livers of grey mullet Oedalechilus labeo and Lisa ramada living in two eastern Mediterranean harbours. Glutathione peroxidase GSH P activity was 2.5 times higher 9 IU g-1 liver and glutathione reductase GSSG R activity was twice as high 2.5 IU g-1 liver in fish from the more polluted harbour at Mersin than in the harbour near Erdemli. Superoxide dismutase SOD activity was 25 lower 4.3 IU g-1 liver in the more polluted harbour. The concentrations of glutathione and malondialdehyde varied both with species and environment by a factor of 2.5-3. DNA adducts in liver were determined by 32P postlabelling. In Oedalechilus labeo in the more polluted harbour, adduct levels were 258 21 adducts per 108 nucleotides mean SE; two groups of Lisa ramada were distinguished having 261 48 and 30 6 adducts per 108 nucleotides, respectively. The average adduct level in a group of mullet of mixed species in the less polluted harbour was 3.3 2.3 adducts per 108 nucleotides. The results illuminate the ability of mullet to live in contaminated marine environments, and show that enzyme activities and liver DNA adduct levels can serve as indicators of marine pollution.  相似文献   

2.
Otteneder M  Lutz WK 《Mutation research》1999,424(1-2):237-247
The quantitative relationship between DNA adducts and tumor incidence is evaluated in this review. All available data on DNA adduct levels determined after repeated administration of a carcinogen to rats or mice have been compiled. The list comprised 27 chemicals, of all major structural classes of carcinogens. For the correlation with tumor incidence, the DNA adduct levels measured at the given dose were normalized to the dose which resulted in a 50% tumor incidence under the conditions of a 2-year bioassay (TD50 dose). In rat liver, the calculated adduct concentration 'responsible' for a 50% hepatocellular tumor incidence spanned from 53 to 2083 adducts per 108 nucleotides, for aflatoxin B1, tamoxifen, IQ, MeIQx, 2,4-diaminotoluene, and dimethylnitrosamine (in this order). In mouse liver, the respective figures were 812 to 5543 adducts per 108 nucleotides, for ethylene oxide, dimethylnitrosamine, 4-aminobiphenyl, and 2-acetylaminofluorene. The observed span (40-fold in rats, 7-fold in mice) reflects differences between the various DNA adducts to lead to critical mutations. If additional carcinogens fit in with this astonishingly narrow range, the measurement of DNA adduct levels in target tissue has the potential to be not only an exposure marker but an individual cancer risk marker. For toremifen and styrene, low levels of DNA adducts were detected in rat liver at the end of a negative long-term bioassay. This shows that the limit of detection of DNA adducts can be well below the limit of detection of an increased tumor incidence. For a cancer risk assessment at low levels of DNA damage, treatment-related adducts must be discussed in relation to the background DNA damage and its inter- and intraindividual variability.  相似文献   

3.
The aim of this study was to investigate the relationship between genetic polymorphism of metabolic enzymes and DNA adduct levels in lymphocytes of low dose cigarette smokers (less than 20 cigarettes per day). We previously reported the effects of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) on lymphocyte DNA adducts. This time we considered not only CYP1A1 and GSTM1 but also cytochrome P4502E1 (CYP2E1) and glutathione S-transferase T1 (GSTT1). DNA adducts in lymphocytes obtained from low dose cigarette smokers (n = 41) and nonsmokers (n = 56) were measured by the 32P-postlabelling method. The adduct levels were compared regarding smoking status and polymorphic genotypes of these four enzymes. The mean SD of DNA adduct levels in all low dose cigarette smokers and non-smokers was 1 05 0 83 per 108 nucleotidesand 0 85 0 35 per 108 nucleotides, respectively. In low dose cigarette smokers, adduct levels were higher in the rare homozygous (MM) for CYP1A1-exon 7 polymorphism compared with the other types such as common homozygous (WW) and heterozygous (WM). CYP1A1-WM, MM in combination with GSTM1 null showed highest adduct levelamong low smokers. The low smokers with rare homozygous for CYP2E1 Dra1 polymorphism tended to have lower adduct levels than wild types. Low dose cigarette smokers with combined GSTM1 null and T1 null had a higher tendency for adduct levels than others. However none of the differences reached statistical significance.  相似文献   

4.
The genetic polymorphism of metabolic enzymes on the relationship between smoking dose and DNA adduct levels in lymphocytes were evaluated in 51 smokers. The genetic polymorphisms of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) were analysed by a PCR method. Lymphocyte DNA adducts were measured by two analytical versions of a 32P-postlabelling method; nuclease P1 digested method and butanol extracted method. Mean adduct levels obtained with the nuclease P1 method (1.21 +/- 0.74 per 108 nucleotides) were higher than those obtained with the butanol extracted method (0.82 +/- 0.47, p < 0.01). There was a significant correlation between adduct levels by the nuclease P1 method and those by the butanol extracted method (r = 0.49, p < 0.01). A significant correlation was not found between smoking dose and DNA adduct levels obtained using both methods in lymphocytes of all subjects. When subjects were divided into two groups by CYP1A1 genotypes, significant correlations between smoking indices, such as number of cigarettes per day years or tar intake per day years, and DNA adduct levels measured by the butanol extracted method was found in heterozygous or miner homozygous for CYP1A1 exon 7 polymorphism. We could not get a significant effect of GSTM1 on the relationship between smoking dose and DNA adducts.  相似文献   

5.
Mitomycin C (MMC) is a clinically used drug with mutagenic and antitumor activities, presumably elicited through its covalent binding to DNA, however, little is known about MMC binding to DNA in vivo. A 32P-postlabeling method that does not require radiolabeled test compounds was employed here to study the formation of DNA adducts in somatic and reproductive tissues of rats 24 h after an i.p. dose of 9 mg/kg MMC. Among 14 tissues studied in female rats, MMC-DNA adduct levels were within a 2-fold range in 11 tissues, i.e. bladder, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, small intestine and stomach (minimum levels of 9.6-21.9 adducts per 10(7) N). Three other tissues, i.e. brain, spleen and thymus, exhibited lower adduct levels (0.2 5.4 and 1.4 adducts, respectively, per 10(7) N). Liver DNA adduct levels were 32% lower in male than in female rats. Testicular DNA contained 2.5 adducts per 10(7) N, i.e. 5.3 times less than ovarian DNA. 32P-labeled adduct patterns were qualitatively similar among the different tissues and consisted of 10 adducts, one of which comprised 71 (+/- 5)% of the total. All these adducts were chromatographically identical to adducts formed by the reaction of chemically reduced MMC with DNA in vitro, demonstrating that metabolic activation of MMC occurred via reduction. Using homopolydeoxyribonucleotides modified with MMC, in vivo adducts were shown to be mostly (greater than 90%) guanine derivatives and small amounts of adenine, cytosine and thymine products. Most of the adducts appeared to be monofunctional derivatives of DNA nucleotides. Dose-dependent MMC-DNA adduct formation was determined in rat liver over an 82-fold range of MMC administered (0.11-9.0 mg/kg). The lowest dose level studied was 4.5 times lower than the recommended single dose for human cancer chemotherapy (20 mg/m2). Thus, these results predict that 32P-postlabeling methodology is suitable to monitor and quantify DNA adducts in tissue biopsies of patients receiving MMC chemotherapy.  相似文献   

6.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

7.
Long lived lymphocytes tend to have higher 32P postlabelling measured levels of adducts than short lived granulocytes in environmental and life style associated i.e. smoking exposures. With the aim of investigating this issue for occupational exposure to PAH and contributing to further validation of some technical aspects of the 32P postlabelling assay, two Italian laboratories analysed PAH-DNA adducts from lymphocytes and total white blood cells WBC . Seventy seven blood samples from coke oven workers employed at a steel plant located in Taranto, Southern Italy, and 14 samples from control subjects were collected. At the University of Padua, DNA was purified from peripheral blood lymphocytes PBL . Two years later, at the University of Bari, white blood cells WBC were isolated from replicate blood samples stored at- 80 C and DNA purified by the same method. In both cases, the nuclease P1 modified postlabelling assay was used to determine aromatic DNA adduct levels. The mean adduct levels were 5.13 3.37 Padua and 2.48 1.27 Bari per 108 nucleotides. Both laboratories observed large inter individual variations of adduct levels ranging from 0.09 to 18.93 per 108 nucleotides. Both the correlation and the agreement of the two sets of data were assessed. Slight correlation r = 0.39; p 0.01 and a poor level of agreement were found, the intra class correlation coefficient being equal to 0.05. Better correlation coefficient r = 0.54, p 0.01 and intra class correlation coefficient r = 0.50 were observed comparing only the adduct levels determined on the diagonal zone DRZ . Our findings seem to confirm the same divergence reported in the literature on DNA adduct levels between lymphocytes and granulocytes.  相似文献   

8.
Long lived lymphocytes tend to have higher 32P postlabelling measured levels of adducts than short lived granulocytes in environmental and life style associated i.e. smoking exposures. With the aim of investigating this issue for occupational exposure to PAH and contributing to further validation of some technical aspects of the 32P postlabelling assay, two Italian laboratories analysed PAH-DNA adducts from lymphocytes and total white blood cells WBC. Seventy seven blood samples from coke oven workers employed at a steel plant located in Taranto, Southern Italy, and 14 samples from control subjects were collected. At the University of Padua, DNA was purified from peripheral blood lymphocytes PBL. Two years later, at the University of Bari, white blood cells WBC were isolated from replicate blood samples stored at- 80 C and DNA purified by the same method. In both cases, the nuclease P1 modified postlabelling assay was used to determine aromatic DNA adduct levels. The mean adduct levels were 5.13 3.37 Padua and 2.48 1.27 Bari per 108 nucleotides. Both laboratories observed large inter individual variations of adduct levels ranging from 0.09 to 18.93 per 108 nucleotides. Both the correlation and the agreement of the two sets of data were assessed. Slight correlation r = 0.39; p 0.01 and a poor level of agreement were found, the intra class correlation coefficient being equal to 0.05. Better correlation coefficient r = 0.54, p 0.01 and intra class correlation coefficient r = 0.50 were observed comparing only the adduct levels determined on the diagonal zone DRZ. Our findings seem to confirm the same divergence reported in the literature on DNA adduct levels between lymphocytes and granulocytes.  相似文献   

9.
A new modification of the 32P postlabelling method was described for the analysis of lipophilic DNA in human tissues. To isolate these DNA adducts the method applied nuclease P1 enrichment before labelling and butanol extraction after labelling, followed by high performance liquid chromatography HPLC separation and flow through radioactivity detection. These enrichment methods are known to work for many adducts of polycyclic aromatic hydrocarbons PAHs . In human peripheral lung tissue fro m smokers the apparent level of the DNA adducts observed was 25-244 adducts per 108 nucelotides; in two alleged non smokers the level of adducts was 17 and 109 adducts per 108 nucleotides. When the same samples were analysed by thin layer chromatography TLC , as in the conventional postlabelling assay, the recovery was 5 of that of the HPLC method. Nevertheless, the results from the two methods correlated. In TLC the adducts were lost because they did not remain in the origin in D1 of the TLC development. There was no large difference in recovery between the two techniques for the PAH-DNA adduct standards used. The present results are underestimates of the true adduct levels because there is no way to correct for labelling efficiency and recovery of unknown adducts. Yet they give a lower estimate of the level of lipophilic DNA adducts in human lung tissue.  相似文献   

10.
A new modification of the 32P postlabelling method was described for the analysis of lipophilic DNA in human tissues. To isolate these DNA adducts the method applied nuclease P1 enrichment before labelling and butanol extraction after labelling, followed by high performance liquid chromatography HPLC separation and flow through radioactivity detection. These enrichment methods are known to work for many adducts of polycyclic aromatic hydrocarbons PAHs. In human peripheral lung tissue fro m smokers the apparent level of the DNA adducts observed was 25-244 adducts per 108 nucelotides; in two alleged non smokers the level of adducts was 17 and 109 adducts per 108 nucleotides. When the same samples were analysed by thin layer chromatography TLC, as in the conventional postlabelling assay, the recovery was 5 of that of the HPLC method. Nevertheless, the results from the two methods correlated. In TLC the adducts were lost because they did not remain in the origin in D1 of the TLC development. There was no large difference in recovery between the two techniques for the PAH-DNA adduct standards used. The present results are underestimates of the true adduct levels because there is no way to correct for labelling efficiency and recovery of unknown adducts. Yet they give a lower estimate of the level of lipophilic DNA adducts in human lung tissue.  相似文献   

11.
Using 32P-postlabelling and thin layer chromatography, DNA adduct formation by the potent animal carcinogen 2,4-diaminotoluene in Fischer-344 rats was investigated. DNA from four different organs, liver, mammary gland, kidney and lung, were examined for adducts following single administration of this compound. DNA binding was detected in all four organs, with each producing one major and two minor adduct spots on autoradiograms. The adducts induced were qualitatively identical among the different organs, but quantitative differences were observed. The two target organs of 2,4-diaminotoluene induced carcinogenesis, the liver and mammary gland produced higher adduct yields, with levels up to 30-times higher than those for the two non-target organs. Since the liver is the principal target for 2,4-diaminotoluene induced carcinogenesis, we further examined DNA adducts from this site for the effects of different doses and time points. DNA binding in liver was detected following doses as low as 4.1 mumol/kg. At the highest concentration examined (2046 mumol/kg), the level of the major adduct was 29.2 adducted nucleotides per 10(7) total nucleotides. The yields for the two minor adducts were approximately one-tenth that for the major adduct. Following a 410 mumol/kg dose, DNA adduct removal over time was examined. DNA adduct removal exhibited biphasic kinetics, with a rapid initial phase followed by a slower rate of elimination. Up to 60% of maximum adduct levels persisted after 2 weeks. DNA binding by 2,4-diaminotoluene was also compared to that by its weakly carcinogenic analog, 2,4-dinitrotoluene. The two compounds produced identical adduct patterns, suggesting that they share common metabolites and adducts. Adduct yields from 2,4-dinitrotoluene, however, were lower. The results of our studies suggest that the differences in carcinogenic potency between 2,4-diaminotoluene and 2,4-dinitrotoluene, as well as the organotropic effects of 2,4-diaminotoluene may be explained, in part, by quantitative differences in the extent of DNA adduct formation.  相似文献   

12.
Otteneder M  Lutz U  Lutz WK 《Mutation research》2002,500(1-2):111-116
Styrene by inhalation had been shown to increase the lung tumor incidence in mice at 20 ppm and higher, but was not carcinogenic in rats at up to 1000 ppm. Styrene-7,8-oxide, the major metabolic intermediate, has weak electrophilic reactivity. Therefore, DNA adduct formation was expected at a low level and a 32P-postlabeling method for a determination of the two regioisomeric 2'-deoxyguanosyl-O6-adducts at the alpha(7)- and beta(8)-positions had been established. The first question was whether DNA adducts could be measured in the rat at the end of the 2 years exposure of a bioassay for carcinogenicity, even though tumor incidence was not increased. Liver samples of male and female CD rats were available for DNA adduct analysis. Adducts were above the limit of detection only in the highest dose group (1000 ppm), with median levels of 9 and 8 adducts per 10(7) nucleotides in males and females, respectively (sum of alpha- and beta-adducts). The result indicates that the rat liver tolerated a relatively high steady-state level of styrene-induced DNA adducts without detectable increase in tumor formation. The second question was whether different DNA adduct levels in the lung of rats and mice could account for the species difference in tumor incidence. Groups of female CD-1 mice were exposed for 2 weeks to 0, 40, and 160 ppm styrene (6h per day; 5 days per week), female CD rats were exposed to 0 and 500 ppm. In none of the lung DNA samples were adducts above a limit of detection of 1 adduct per 10(7) DNA nucleotides. The data indicate that species- and organ-specific tumor induction by styrene is not reflected by DNA adduct levels determined in tissue homogenate. The particular susceptibility of the mouse lung might have to be based on other reactive metabolites and DNA adducts, indirect DNA damage and/or cell-type specific toxicity and tumor promotion.  相似文献   

13.
Quantification of 7 2 hydroxyethyl guanine 7 HEG adduct in DNA of livers and lymphocytes of male Sprague-Dawley rats exposed to 300 ppm ethene by inhalation 12 h a day for three consecutive days was performed to evaluate the potential of ethene to produce DNA adducts in these tissues. The persistence of 7 HEG in livers and lymphocytes was studied in rats sacrificed 0, 1, 5, and 20 days after the last exposure. DNA samples from control and treated animals were analysed for 7 HEG and 7 methylguanine 7 MG adducts by thin layer chromatography TLC combined with a high pressure liquid chromatography HPLC assay. After a 3 day exposure to ethene, 7 HEG accumulated to a similar extent in liver and lymphocytes, with the mean adduct level of 7.0 0.7 adducts per 107 nucleotides in liver and 7.4 0.7 adducts per 107 nucleotides in lymphocytes of rats sacrificed immediately after cessation of exposure. The approximate half life of 7 HEG was 5 days in liver and 3 days in lymphocytes, which is consistent with the loss of adduct primarily by spontaneous depurination. In addition, the background levels of 7 HEG and 7 MG were determined in the liver and lymphocytes from the control rats.  相似文献   

14.
Indigenous mussels, Mytilus edulis, were collected at sites with supposed different amounts of pollution; Reykjavík harbour, Keflavík harbour, Grafarvogur and Hvalfj?rdur (reference), along the south-western coast of Iceland in March 2000. Mussels from Hvalfj?rdur and Reykjavík harbour were also collected in August the same year. Additionally, mussels were transplanted from the reference site to Reykjavík harbour for 6 weeks during both winter and summer for comparison. DNA adducts were analysed by 32P-post-labelling in gills and digestive gland. Highest adduct levels were found in gill tissue from indigenous mussels collected in Reykjavík harbour. Adduct levels in both tissues from mussels collected at the reference site were below or very close to the detection limit during winter, but seemed to increase a little during summer. Mussels from sites with supposed intermediate pollution had intermediate levels of DNA adducts in gills but did not differ from Reykjavík harbour in digestive gland. No increase in adduct levels was observed in mussels transplanted from the reference site to Reykjavík harbour, except for a slight increase in digestive gland during winter. This study shows that 32P-post-labelling analysis of DNA adducts is sensitive enough to be used on indigenous mussels from relatively pristine areas and that adduct levels are increased in harbours/urban sites. However, transplantation of mussels from a clean site to the harbour for 6 weeks did not result in increased adduct levels in gills, the tissue with the highest adduct levels. The results also indicate that seasonal variation in adduct levels may occur.  相似文献   

15.
DNA adducts of mitomycin C (MMC) were detected by 32P-postlabeling analysis in both surgical specimens and an autopsy sample of the liver of patients with hepatocellular carcinoma who had received chemotherapy with MMC. Four kinds of adducts were detected in all 6 patients treated with MMC. These adducts had identical chromatographic mobilities to those of adducts in the liver of rats treated with MMC, but 1 additional adduct was detected in rat liver. In patients treated with MMC, about 3 adducts/10(8) nucleotides were found 4 days after MMC treatment, and 1 adduct/10(8) nucleotides 14 days after treatment and the latter level was maintained for up to 56 days. MMC-DNA adducts were also detected in peripheral blood leukocytes from a patient 1 and 7 days after MMC treatment, at levels of 1 and 0.6 adduct/10(8) nucleotides, respectively. These results suggest the tumor-initiating activity of MMC in humans.  相似文献   

16.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

17.
The environmental contaminant 3-nitrobenzanthrone (3-nitro-7H-benz[d, e]anthracen-7-one) was recently shown to be a very strong bacterial mutagen, suggesting a new class of mutagenic compounds present in airborne particulate matter and diesel exhaust. Using the 32P-postlabeling assay, we investigated the capacity for 3-nitrobenzanthrone to form DNA adducts in vitro. Calf thymus DNA was incubated with 3-nitrobenzanthrone and either xanthine oxidase, a mammalian nitroreductase or rat liver S9 or zinc. Under these conditions 3-nitrobenzanthrone formed a total of seven adducts detectable by 32P-postlabeling. Using enrichment by butanol extraction the highest level of DNA adduct formation was found with activation by zinc (RAL: 88.4+/-32 per 108 nucleotides) followed by activation with xanthine oxidase (RAL: 75.5+/-12) and activation by rat liver S9 (RAL: 48.6+/-8). Three of the seven adduct spots were detected in all activation systems, however different amounts of individual spots were obtained in the different in vitro systems. The adduct pattern observed for the enzymatic incubations consisted of three major spots and was essentially identical. Chemical reduction of 3-nitrobenzanthrone by zinc resulted in five adduct spots whose formation was found to be concentration dependent. All adducts of 3-nitrobenzanthrone observed in this study migrated primarily along a diagonal zone, typical for DNA adducts derived from extracts of airborne particulate matter. When butanol enrichment was compared with nuclease P1 enrichment one adduct was clearly sensitive to the 3'-monophosphatase activity of nuclease P1. Our results demonstrate that 3-nitrobenzanthrone binds covalently to DNA after metabolic activation, forming multiple DNA adducts in vitro all of which are reduction products. These adducts may contribute to the known genotoxicity and carcinogenicity of extracts from airborne particulates.  相似文献   

18.
The aim of this study was to use DNA adducts levels, detected by 32P-postlabelling, as a biomarker to assess human exposure to polycyclic aromatic hydrocarbons (PAHs) from a coke oven plant and explore the possible association between CYP1A1 MspI, GSTP1, GSTM1 and GSTT1 genotypes, and smoking status on bulky DNA adduct formation. A large amount of inter-individual variation in adduct level was observed among workers with the same job and the same smoking habits. No significant differences were observed in DNA adduct levels between the coke oven workers and control group. Smokers in the control group had significantly higher DNA adducts than the non-smokers in the same group (35.13+/-21.11 versus 11.18+/-8.00, per 10(8) nucleotides, P=0.003). In this group, the correlation between the level of DNA adducts and the cigarettes smoked was strongly significant (r=0.70, P<0.0005), but no correlation was found among the coke oven workers. Among non-smokers there was a significant difference between the control group and the coke oven workers (11.18+/-8.00 versus 24.62+/-15.20, per 10(8) nucleotides, P=0.03). These results suggests that tobacco smoke could behave as a confounding factor for evaluation of DNA adducts arising from occupational exposure. The levels of DNA adducts in smokers not occupationally exposed to PAHs is dependent on the polymorphisms CYP1A1 MspI in the 3' non-coding region (49.04+/-22.18 versus 25.85+/-15.87, per 10(8) nucleotides, P<0.05), but no effect was observed for the GST genotypes studied.  相似文献   

19.
Smoking-related aromatic DNA adducts in lymphocytes were measured from smokers (n = 76), ex-smokers (n = 25) and non-smokers (n = 56) by the 32P-postlabelling method, to clarify whether a genetic polymorphism for metabolic enzymes could explain the inter-individual variation of DNA adduct levels. Adduct levels were compared with respect to smoking status and polymorphic genotypes of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GTSM1). The mean adduct level (1.24 per 108 nucleotides) in smokers was significantly higher than that (0.85 per 108) in non-smokers. Although we expected higher adduct levels in the CYP1A1 variant or GSTM1 null subjects, the adduct level in 'GSN1 nulls' was significantly lower than that in 'GSTM1 presents' among smokers. DNA adduct levels had significant positive correlations with smoking indices such as number of cigarettes or smoking years in all subjects. In smokers only, however, no correlation was found, because there were negative correlations between adduct levels and smoking dose in GSTM1 null genotypes. CYP1A1 genotypes had no effects on adduct levels.  相似文献   

20.
Groups of male Alderley Park rats were dosed concomitantly with 2-acetylaminofluorene (2AAF) by gavage at doses between 0.01 mg/kg and 40 mg/kg, and livers sampled 2-72 h later. The liver of one group of animals was perfused to yield hepatocytes which were assayed in vitro for unscheduled DNA synthesis (UDS) via incorporation of tritiated thymidine and autoradiography. DNA was extracted from the livers of the other group and DNA adduct levels determined using the 32P-postlabelling technique. The major C-8 2-aminofluorene/guanosine adduct and 3 minor adducts were quantitated, enabling the relative sensitivity of the 2 techniques to be compared. A dose- and time-related UDS response was observed, which, at the most sensitive time-point (12 h) enabled DNA repair to be discerned at a dose level of 0.1-1 mg/kg of 2AAF, a response classified as formally positive at 5 mg/kg 2AAF. Only the C-8 adduct, as determined by 32P-postlabelling, was discernible at 0.01 mg/kg of 2AAF, although other adducts were visible on autoradiograms at higher dose levels. It is concluded that as part of a well-defined dose response, UDS can be discerned with confidence for doses of 2AAF between approximately 0.1 and 5 mg/kg, and DNA adducts for doses of 2AAF between approximately 0.01 and 1 mg/kg. Discernible UDS for 2AAF in the rat liver is apparent at approximately 13 DNA (total) adducts/10(8) nucleotides, or approximately 8 DNA (C-8) adducts/10(8) nucleotides. The presumed C-8 2-acetylaminofluorene/guanosine adduct, prepared by reaction of 2-acetoxy-2-acetylaminofluorene (2AAAF) with DNA, was a significant but unreliable marker of 2AAF/DNA adducts in the rat liver in vivo. DNA repair did not appear to remove DNA adducts selectively, and adducts remained in DNA when discernible DNA repair had ceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号