首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated an Arabidopsis albino and pale green 10 (apg10) mutant which exhibits pale green cotyledons and true leaves at the juvenile stage. We identified a valine to leucine change in BBMII (N'-[(5'-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide) isomerase involved in histidine biosynthesis. The morphological abnormality of apg10 was recovered by histidine supplementation. The histidine limitation induced by apg10 mutation causes dynamic changes of the free amino acid profile, suggesting the existence of a cross-pathway regulatory mechanism of amino acid biosynthesis in plants. We also revealed that the APG10 knockout mutant exhibited embryo lethality, indicating the essential role of the Arabidopsis BBMII isomerase for plant growth.  相似文献   

2.
3.
The leptospira cbiC encodes the enzyme catalyzing the methyl rearrangement reaction of the cobalamin biosynthesis pathway. The protein has been cloned and overexpressed as a His-tagged recombinant protein in Escherichia coli. The crystal structures have been solved in two crystal forms (P4(2)2(1)2 and P3(1)21) diffracting to 3.0 and 2.3A resolution, respectively. The structures are similar to the precorrin-8x methyl mutase (CobH), an enzyme of the aerobic pathway to vitamin B12.  相似文献   

4.
The structure of tryptophan 2,3-dioxygenase (TDO) from Ralstonia metallidurans was determined at 2.4 A. TDO catalyzes the irreversible oxidation of l-tryptophan to N-formyl kynurenine, which is the initial step in tryptophan catabolism. TDO is a heme-containing enzyme and is highly specific for its substrate l-tryptophan. The structure is a tetramer with a heme cofactor bound at each active site. The monomeric fold, as well as the heme binding site, is similar to that of the large domain of indoleamine 2,3-dioxygenase, an enzyme that catalyzes the same reaction except with a broader substrate tolerance. Modeling of the putative (S)-tryptophan hydroperoxide intermediate into the active site, as well as substrate analogue and mutagenesis studies, are consistent with a Criegee mechanism for the reaction.  相似文献   

5.
6.
7.
8.
A C-methyltransferase that catalyses the transfer of a methyl group from S-adenosylmethionine to C-3 of tryptophan, resulting in beta-methyltryptophan, has been identified in cell-free extracts of streptonigrin-producing Streptomyces flocculus. The absolute configuration of the product was shown to be (2S,3R)-beta-methyltryptophan by high-pressure liquid chromatography and reactivity with D- and L-amino acid oxidases. In shake culture, maximum specific activity occurs after S. flocculus enters stationary phase, but before significant streptonigrin accumulates.  相似文献   

9.
The function of a putative glycosyltransferase (At2g35100) was investigated in Arabidopsis (Arabidopsis thaliana). The protein is predicted to be a type 2 membrane protein with a signal anchor. Two independent mutant lines with T-DNA insertion in the ARABINAN DEFICIENT 1 (ARAD1) gene were analyzed. The gene was shown to be expressed in all tissues but particularly in vascular tissues of leaves and stems. Analysis of cell wall polysaccharides isolated from leaves and stems showed that arabinose content was reduced to about 75% and 46%, respectively, of wild-type levels. Immunohistochemical analysis indicated a specific decrease in arabinan with no change in other pectic domains or in glycoproteins. The cellular structure of the stem was also not altered. Isolated rhamnogalacturonan I from mutant tissues contained only about 30% of the wild-type amount of arabinose, confirming the specific deficiency in arabinan. Linkage analysis showed that the small amount of arabinan present in mutant tissue was structurally similar to that of the wild type. Transformation of mutant plants with the ARAD1 gene driven by the 35S promoter led to full complementation of the phenotype, but none of the transformants had more arabinan than the wild-type level. The data suggest that ARAD1 is an arabinan alpha-1,5-arabinosyltransferase. To our knowledge, the identification of other L-arabinosyltransferases has not been published.  相似文献   

10.
Compartmentation in histidine biosynthesis   总被引:2,自引:0,他引:2  
  相似文献   

11.

Key message

Genetic and molecular analysis of an Arabidopsis root development mutant identified a putative dehydrogenase gene involved in homoserine biosynthesis.

Abstract

In higher plants, homoserine (Hse) is derived from aspartate (Asp) and is an important intermediate for production of methionine (Met), threonine (Thr), and isoleucine (Ile). In Arabidopsis, six enzymes involved in the biosynthesis of Hse from Asp have been well characterized. It is not known, however, whether there exist other enzymes involved in this process. In this work, we characterized an Arabidopsis mutant, ara (a ltered r oot a rchitecture), with a short primary root and an increased number of lateral roots. Genetic and molecular analysis indicated that the ARA gene encodes a protein with a D-isomer specific 2-hydroxyacid dehydrogenase domain. ARA is expressed in all plant organs and is localized in the cell periphery. The ara mutant phenotypes can be rescued by exogenously applied Hse, Met, Ile and 2-oxobutanoate. Based on the results presented here, we propose that the ARA protein may be a dehydrogenase involved in homoserine biosynthesis.  相似文献   

12.
The liver cytosolic enzyme tryptophan 2,3-dioxygenase (TDO) catalyzes the oxidation of L-tryptophan to formylkynurenine and controls the physiological flux of tryptophan into both the serotonergic and kynureninic pathways. This hemoprotein enzyme is composed of four noncovalently bound subunits of equivalent mass and contains two heme moieties per molecule. Electron paramagnetic resonance analyses have indicated that a histidyl nitrogen is involved in heme ligation [Henry et al., (1976) J. Biol. Chem. 251, 1578], but the identity of the His residue(s) is unknown. In an attempt to characterize the active site of the enzyme we have substituted each of the 12 His residues in the rat TDO subunit with Ala, to determine their relative importance in heme binding. Sequence alignment of the rat liver protein with that of known or putative TDO sequences from other organisms reveals that four of the His residues are conserved in eukaryotes, two of which are also conserved in prokaryotes. Our findings indicate that replacement of the evolutionarily conserved His 76 and 328 residues resulted in a dramatic reduction of TDO activity, whereas that of the eukaryotically conserved His70 resulted in a significant reduction relative to that of the wild-type enzyme. On the other hand, replacement of the other eukaryotically conserved His273 residue, while affecting the relative expression of the enzyme, had little effect on its specific activity. Size-exclusion analyses revealed that the His76Ala and His328Ala mutants retained little or no heme, suggesting that these may be key residues in ligating the prosthetic heme moieties. Whether these His residues are both provided by the same TDO subunit or a different TDO subunit remains to be determined.  相似文献   

13.
Thiocoraline is a thiodepsipeptide antitumor agent that belongs to the family of bisintercalator natural products that bind duplex DNA through their two planar intercalating moieties. In thiocoraline, the 3-hydroxyquinaldic acid (3HQA) chromophores required for intercalation are derived from L-Trp. We have expressed the Micromonospora sp. ML1 tryptophan 2,3-dioxygenase(TDO) TioF, purified it from E. coli, and confirmed its role in the irreversible oxidation of L-Trp to N-formylkynurenine, the proposed first step during 3HQA biosynthesis. We have established that TioF is a catalyst with broader specificity than other TDOs, but that is less promiscuous than indoleamine 2,3-dioxygenases. TioF was found to display activity with various L-Trp analogs (serotonin, D-Trp, and indole). The TioF reaction products generated during this study will be used as substrates for subsequent analysis of the other enzymes involved in 3HQA biosynthesis.  相似文献   

14.
The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan.  相似文献   

15.
AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose‐containing disaccharide moiety. The corresponding sugar nucleotide‐based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X‐ray structure at 1.50‐Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT‐I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity. Proteins 2015; 83:1547–1554. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
The prx gene, which is highly homologous to putative proteinases, has been identified by sequencing in the vicinity of the biosynthetic gene cluster for landomycin E (LaE) biosynthesis (lnd) in Streptomyces globisporus 1912. The S. globisporus Pro6 gene, deficient in prx, produced fivefold less LaE than the parental strain. The expression of prx in S. globisporus Pro6 restored LaE production to wild-type levels, whereas expression of the pathway-specific regulatory gene lndI did not. The introduction of additional copies of prx into the wild-type strain using a pSG5-based plasmid, pKC1139, led to a 2.7-fold increase in LaE production. These results indicate that prx is a novel regulatory gene for LaE biosynthesis.  相似文献   

19.
The biosynthesis of histidine (His) in microorganisms, long studied through the isolation and characterization of auxotrophic mutants, has emerged as a paradigm for the regulation of metabolism and gene expression. Much less is known about His biosynthesis in flowering plants. One limiting factor has been the absence of large collections of informative auxotrophs. We describe here the results of a systematic screen for His auxotrophs of Arabidopsis (Arabidopsis thaliana). Ten insertion mutants disrupted in four different biosynthetic genes (HISN2, HISN3, HISN4, HISN6A) were identified through a combination of forward and reverse genetics and were shown to exhibit an embryo-defective phenotype that could be rescued by watering heterozygous plants with His. Male transmission of the mutant allele was in several cases reduced. Knockouts of two redundant genes (HISN1B and HISN5A) had no visible phenotype. Another mutant blocked in the final step of His biosynthesis (hisn8) and a double mutant altered in the redundant first step of the pathway (hisn1a hisn1b) exhibited a combination of gametophytic and embryonic lethality in heterozygotes. Homozygous mutant seedlings and callus tissue produced from rescued seeds appeared normal when grown in the presence of His but typically senesced after continued growth in the absence of His. These knockout mutants document the importance of His biosynthesis for plant growth and development, provide valuable insights into amino acid transport and source-sink relationships during seed development, and represent a significant addition to the limited collection of well-characterized auxotrophs in flowering plants.  相似文献   

20.
Pseudomonas aeruginosa lipopolysaccharide (LPS) contains two glycoforms of core oligosaccharide (OS); one form is capped with O antigen through an alpha-1,3-linked L-rhamnose (L-Rha), while the other is uncapped and contains an alpha-1,6-linked L-Rha. Two genes in strain PAO1, wapR (PA5000) and migA (PA0705), encode putative glycosyltransferases associated with core biosynthesis. We propose that WapR and MigA are the rhamnosyltransferases responsible for the two linkages of L-Rha to the core. Knockout mutants with mutations in both genes were generated. The wapR mutant produced LPS lacking O antigen, and addition of wapR in trans complemented this defect. The migA mutant produced LPS with a truncated outer core and showed no reactivity to outer core-specific monoclonal antibody (MAb) 5C101. Complementation of this mutant with migA restored reactivity of the LPS to MAb 5C101. Interestingly, LPS from the complemented migA strain was not reactive to MAb 18-19 (specific for the core-plus-one O repeat). This was due to overexpression of MigA in the complemented strain that caused an increase in the proportion of the uncapped core OS, thereby decreasing the amount of the core-plus-one O repeat, indicating that MigA has a regulatory role. The structures of LPS from both mutants were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry. The capped core of the wapR mutant was found to be truncated and lacked alpha-1,3-L-Rha. In contrast, uncapped core OS from the migA mutant lacked alpha-1,6-L-Rha. These results provide evidence that WapR is the alpha-1,3-rhamnosyltransferase, while MigA is the alpha-1,6-rhamnosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号