首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown that gamma-irradiation of Zajdela hepatoma cells (10 Gy) induces inhibition of DNA synthesis initiation at a nuclear matrix and a change in its DNA-protein content. Irradiation of hepatoma cells with 10 and 50 Gy decreases incorporation of newly synthesized proteins in the firmly bound DNA-protein complexes of nuclear matrix. After 60-120 min postirradiation incubation of cells at 37 degrees C DNA-protein content of the nuclear matrix and its firmly bound DNA-protein complexes are restored. However the rate of DNA synthesis initiation being below the control level.  相似文献   

2.
Chromium-induced cross-linking of nuclear proteins and DNA   总被引:3,自引:0,他引:3  
The in vivo cross-linking of proteins to DNA in intact Novikoff ascites hepatoma cells exposed to the chromium salt K2CrO4 was studied. DNA-protein complexes were assayed by high speed centrifugation of cells solubilized in buffered 4% sodium dodecyl sulfate and by electrophoretic identification of proteins associated with DNA-containing pellets. Further evidence of DNA-protein complexes, not dissociable in this buffer, was obtained by CsCl gradient centrifugation. Time dependence experiments showed that detectable cross-linking occurred after cells were exposed to chromium salt for at least 4 h, and the amount of DNA-protein complexes increased with longer incubation times. Complex formation occurred only with chromium salt concentrations of 200 microM or greater, and maximal cross-linking was effected at 5 mM. Immunotransfer methodology employing antibodies to nuclear matrix fraction and lamins was used to identify some of the polypeptides comprising the cross-linked complexes. These studies indicated specificity of chromium-induced complex formation within the nuclear protein fractions assayed. Our results document the ability of chromate to produce specific DNA-protein cross-links in living cells.  相似文献   

3.
A rapidly sedimenting DNA-protein complex was isolated from nuclear lysates in 2 M NaCl and characterized with regard to its polypeptide composition and the DNA-binding properties of the purified proteins. The complex consists of the nuclear matrix with attached DNA. Electrophoresis in SDS-polyacrylamide gels revealed two major and five minor polypeptide bands, mainly in the 60 to 75 kDa molecular weight region. The DNA-matrix complex dissociated into free DNA and proteins in the presence of 2 M NaCl and 5 M urea. The proteins could be purified by chromatography on hydroxyapatite and showed a strong tendency to reassociate at 0.15 M NaCl concentration in the absence of urea. DNA was bound to the reassociated proteins at 0.15 M NaCl concentration. Part of the DNA-protein complex was stable at 1 M NaCl concentration. The binding appeared to be random with regard to the DNA sequence.  相似文献   

4.
Microtubule-associated protein-2 (MAP-2) isolated from porcine brains stimulated DNA synthesis catalyzed by the nuclear matrix isolated from Physarum polycephalum in the presence of activated DNA as exogenous templates. The degree of the stimulation depended on the amount of the nuclear matrix, but not on that of the template. MAP-2 also stimulated DNA polymerase alpha activity solubilized from nuclei, but not DNA polymerase beta activity. These results suggest that MAP-2 stimulates DNA synthesis by interacting with the putative DNA replication machinery including DNA polymerase alpha bound to the matrix. Similar stimulation occurred in the nuclear matrix isolated from HeLa and rat ascites hepatoma cells, which strongly suggests that MAP-2 is involved in the control of DNA replication in eukaryotic cells.  相似文献   

5.
Current evidence suggests that DNA is covalently attached to proteins in the nuclear matrix of eukaryotic cells and that specific DNA sequences are tightly associated with the nuclear matrix. However, it has not been documented that specific DNA sequences can become covalently attached to nuclear matrix protein. We have examined the binding of cloned DNA sequences that contain the avian beta-globin gene enhancer, a region previously shown to be matrix associated in erythroid cells in vivo, with nuclear matrices from several avian tissue sources to determine if covalent DNA-protein bonds are formed. Our results indicate that sequence-specific DNA-protein complexes that are resistant to denaturation by SDS, boiling, and phenol and disulfide reduction are formed. Excess protein, capable of forming very tight bonds with DNA that contains the beta-globin gene enhancer, is present in cells in which matrix attachment of this DNA sequence is not detected in vivo. Evidence is presented that suggests that the protein to which DNA forms very tight bonds is not topoisomerase II. These results are discussed in relation to current models of the nuclear matrix and the utility of in vitro assays of matrix attachment regions using cloned DNA.  相似文献   

6.
The intimate structure of the complexes located at the sites of DNA loops attachment to the nuclear skeleton was analysed. It is shown that: there are at least three components of the attachment site complex: DNA, protein, RNA; protein moiety consists of 7-8 species with Mr 70-17 kDa. Their association with DNA is resistant to ionic detergents, high salt and urea treatments. The DNA-protein complex is also resistant to the SDS-pronase-phenol deproteinisation procedure; the buoyant density of the complex is the same as DNA density. RNase digestion at low ionic strength reduces density of the complex while the same treatment at 0,4 M NaCl has no effect; DNA-protein complexes isolated with urea-high salt treatment are visualised as globular particles 25-35 nm in diameter with DNA loops attached. These particles were not observed after detergent treatment although protein composition of the complex remained the same.  相似文献   

7.
The class of nonhistone chromosomal proteins that remains bound to DNA in chromatin in the presence of 2.5 M NaCl-5 M urea has proven refractile to biochemical analysis. In order to study its role in chromatin organization, we have produced monoclonal antibodies that are specific for the HeLa DNA-protein complex that remains after extraction of chromatin with high salt and urea. The antibody-producing clones were identified with an ELISA assay. Of the six clones selected, five were stabilized by limiting dilution. All clones are IgG producers. None cross-react significantly with native DNA, core histones, or the high-mobility group nonhistone proteins. All antibodies are specific for nuclear or juxtanuclear antigens. Indirect immunofluorescence shows that three antibodies, which are nonidentical, stain three different nuclear networks. Available evidence indicates that two of these networks are the nuclear matrix. A fourth antibody reveals structures reminiscent of chromocenters. A fifth antibody, AhNA-1, binds to interphase HeLa chromatin and specifically decorates metaphase chromosomes. AhNA-1 similarly recognizes rat chromosomes. Each of these monoclonal antibodies also reveals a changing pattern of nuclear staining as cells progress through the cell cycle. Presumably, this reflects the rearrangement of the cognate antigens.  相似文献   

8.
A novel procedure for isolation of nuclear matrices from chicken erythroblast cells was elaborated. The influence of variations in the isolation procedure on structural integrity and morphology of nuclear matrices as well as on properties of the nuclear matrix-associated DNA fractions was investigated. The incubation of isolated nuclei in the presence of Cu2+ ions provided significant stabilization of the nuclear matrix. Copper treatment of nuclei did not affect the properties of the nuclear skeleton-associated DNA fraction. In both copper-stabilized as well as unstabilized nuclei, nuclear matrix-attached DNA was digested to the same extent with nucleolytic enzymes, and could be totally removed from nuclear matrices by 2 M NaCl-2 M urea treatment. The fine morphology of the nuclear matrix did not change after extraction of nuclear skeleton-associated DNA fragments. In the presence or absence of copper ions, matrix DNA was found to be qualitatively different compared with total DNA, in particular with respect to the representation of specific repetitive sequences of the chicken beta globin gene domain.  相似文献   

9.
DNA-protein complexes have been isolated from HeLa cell nuclei and nuclear matrix preparations. Two proteins, 55 and 66 kilodaltons in size, remain bound to HeLa DNA after treatment at 80 degrees C in 2% sodium dodecyl sulfate and purification by exclusion chromatography on Sepharose 2B-CL in the presence of 0.3% sodium dodecyl sulfate. These proteins appear to be tightly bound but not covalently linked to the DNA, and they are distributed over the DNA with an average spacing of 40 kilobase pairs. This spacing distribution remains essentially constant throughout the cell cycle. The proteins are bound to the residual 2% of HeLa cell DNA which remains attached to the nuclear matrix after extensive nuclease digestion, a condition which reduces the average size of the DNA to approximately 150 base pairs. Our results suggest that these tightly bound proteins are involved in anchoring cellular DNA to the nuclear matrix. These tightly bound proteins are identical by partial peptide mapping to proteins found tightly bound to the DNA of mammalian, plant, and bacterial cells (D. Werner and C. Petzelt, J. Mol. Biol. 150:297-302, 1981), implying that these proteins are involved in the organization of chromosomal domains and are highly conserved in both procaryotic and eucaryotic cells.  相似文献   

10.
A study was made of the distribution of unscheduled DNA synthesis (induced by UV- or gamma-radiation and resistant to hydroxyurea) between the DNA sites in the nuclear matrix and total nuclear DNA of Zajdela ascites hepatoma cells. It was shown that during the first 1.5 to 5 min of the postirradiation incubation the rate of the unscheduled synthesis of DNA was considerably higher in the DNA fraction, firmly associated with the nuclear matrix proteins, than in the total nuclear DNA.  相似文献   

11.
The KpnI sequences constitute the dominant, long, interspersed repetitive DNA families in primate genomes. These families contain related, but nonidentical sequence subsets, some of which border functional gene domains and are transcribed into RNA. To test whether these sequences perform an organizational function in the nucleus, their association with the nuclear matrix has been examined in African green monkey cells. DNase I treatment depleted the residual matrix of most of the KpnI 1.2- and 1.5-kilobase pair family sequences although significant amounts of each family remained in the loop attachment DNA fragments. Hybridization analysis of the KpnI and RsaI cleavage patterns of matrix loop attachment DNA indicate that some sequence subsets of these KpnI families are relatively less depleted than others. The nuclear matrix association of subpopulations of KpnI 1.2- and 1.5-kilobase pair families was also shown by metrizamide gradient centrifugation of nuclear matrix complexes cleaved by KpnI endonuclease. The gradients demonstrate that some KpnI segments are differentially associated with nuclear matrix proteins. Moreover, the procedures permit the preparative isolation and purification of the DNA-protein complexes containing these KpnI 1.2- and 1.5-kilobase pair sequence families. Speculations on the relationship between the matrix association of these KpnI family sequences and their possible roles in gene organization and expression are presented and discussed.  相似文献   

12.
It was shown that after UV-irradiation of Ehrlich ascites tumor cells with doses suppressing DNA replication, DNA-protein cross-links were mainly predominantly in the nuclear matrix as compared to peripheral chromatin. A modified method of determining DNA-protein cross-links in the nuclear matrix preparations is proposed.  相似文献   

13.
Analysis of DNA-protein complexes induced by chemical carcinogens.   总被引:1,自引:0,他引:1  
DNA-protein complexes induced in intact cells by chromate have been isolated and compared with those formed by other agents such as cis-platinum. Actin has been identified as one of the major proteins that is complexed to the DNA by chromate based upon a number of criteria including, a molecular weight and isoelectric point identical to actin, positive reaction with actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of very similar molecular weight and isoelectric points and these complexes can be disrupted by exposure to chelating or reducing agents. These results suggest that the metal itself is participating in rather than catalyzing the formation of a DNA-protein complex. An antiserum which was raised to chromate-induced DNA-protein complexes reacted primarily with a 97,000 protein that could not be detected by silver staining. Western blots and slot blots were utilized to detect p97 DNA-protein complexes formed by cis-platinum, UV, formaldehyde, and chromate. Other work in this area, involving studying whether DNA-protein complexes are formed in actively transcribed DNA compared with genetically inactive DNA, is discussed. Methods to detect DNA-protein complexes, the stability and repair of these lesions, and characterization of DNA-protein complexes are reviewed. Nuclear matrix proteins have been identified as a major substrate for the formation of DNA-protein complexes and these findings are also reviewed.  相似文献   

14.
The in vivo cross-linking of proteins and DNA by heavy metals   总被引:4,自引:0,他引:4  
Cross-linking of proteins to DNA in live, intact Novikoff ascites hepatoma cells exposed in vitro to different concentrations of CuSO4, Pb(NO3)2, HgCl2, and AlCl3 was studied. Protein-DNA complexes were separated by high-speed centrifugation of cells solubilized in buffered 4% sodium dodecyl sulfate and assayed by electrophoretic separation of proteins associated with the DNA-containing pellets. Concentration dependence experiments showed that the optimal cross-linking occurred at metal concentration of 0.5 mM for CuSO4, HgCl2, and AlCl3 while the optimal cross-linking for Pb(NO3)2 was at 5 mM. For some metals at concentrations higher than optimal, the amounts of cross-linked proteins decreased significantly. Immunochemical analysis of the cross-linked proteins using antibodies to matrix, chromatin, lamins, and cytokeratin fractions demonstrated that some, but not all, members of these protein families became cross-linked to the DNA. Each metal exhibited a cross-linking pattern of its own, different from those of the other metals. Radioactive labeling experiments showed that all the metals tested became associated with the DNA-protein pellets within 1 h after their addition to the incubation medium. However, hexavalent chromium required more than 2 h before appearing in the DNA-protein pellets in significant amounts.  相似文献   

15.
Binding of highly purified glucocorticoid receptor complexes to nuclear matrix was evaluated. Extraction of purified nuclei with 2M potassium chloride and brief deoxyribonuclease digestion leaves a matrix structure containing 1% of nuclear DNA and 6-12% of nuclear proteins. The nuclear matrix retained two binding sites for receptor complexes, a high affinity, low capacity site and a low affinity, high capacity site. These sites have affinities and capacities consistent with those reported for binding of these complexes to intact nuclei. More extensive deoxyribonuclease treatment of the matrix resulted in a marked reduction of high affinity complex binding. Furthermore, the DNA binding form of the receptor complex but not the unactivated receptor complex bound to DNA fibers anchored to nuclear matrix as visualized by 18 nm gold particle receptor complexes. The data suggest that the nuclear matrix is the major site for coordinating glucocorticoid hormone action in the nucleus.  相似文献   

16.
17.
There are two types of DNA-nuclear matrix interactions in animal cells as revealed by the release of DNA from isolated nuclei by three successive gradients: NaCl, LiCl-urea and temperature. Nuclei were treated with dissociating agents while being adsorbed on the Celite columns. "Weak" DNA-matrix interactions which dissociate in 1.5 M LiCl-3 M urea at 2 degrees appear to be sensitive to ethidium bromide and resistant to exogeneous nucleases (DNAase I, DNAase II and micrococcal nuclease), to DNA-damaging agents, including alkylators and gamma-irradiation, and also to psoralen-induced cross-links. "Strong" DNA-matrix interactions proved to be very different. They dissociate in 4 M LiCl-8 M urea at approximately 90 degrees, are very sensitive to DNAase I and other nucleases, slightly sensitive to chemicals and irradiation at doses stimulating single-stranded DNA breaks, but resistant to ethidium bromide. DNA strand separation seems to be necessary prerequisite for DNA release from its "strong" complex with nuclear matrix. A model for the topological link between DNA and the nuclear matrix involved in DNA replication complex is discussed.  相似文献   

18.
An intracellular effect of nickel(II) which may be involved in its carcinogenic action is the alteration of normal DNA-protein binding. This effect of ionic nickel was studied in Chinese hamster ovary cells using several chromatin isolation methods in combination with SDS-polyacrylamide gel electrophoresis. DNA from cells incubated with (35S)-methionine or (35S)-cysteine to radiolabel protein was prepared by three methods: (solation of nuclei or nucleoids followed by chloroform-isoamyl alcohol (24:1 v/v) extraction and in some cases an additional extraction in the absence or presence of 2M NaCl, 40 mM EDTA or SDS; by isopycnic centrifugation through Cs2SO4 gradients containing 0.8% sarkosyl, 2.2 MCs2SO4, 1 mM NaCl and 10 mM EDTA; or by chromatin disaggregation and denaturation using 9 M urea, 2% 2-mercaptoethanol, 4% Nonidet P-40 +/- 2 M NaCl. DNA from nickel-treated cells consistently had more (35S)-methionine radioactivity associated with it than did DNA from untreated cells. This radioactivity was resistant to ribonuclease but sensitive to protease. Differential extraction using denaturing agents and high ionic strength followed by SDS-polyacrylamide gel electrophoresis revealed that most of the tightly bound proteins were nonhistone chromosomal proteins, and possibly histone 1. The enhancement of DNA-protein binding from nickel-treated cells was disrupted by SDS, suggesting that nickel ions do not function as classical bifunctional crosslinking agents. Since regulation of DNA replication and gene expression is dependent upon DNA-protein interactions, the effect of nickel in altering the extent of DNA-protein binding may interfere with this regulation and may contribute to the carcinogenic activity of nickel compounds.  相似文献   

19.
To elucidate the role of poly(ADP-Rib) in the nucleus, DNA synthesis and DNA fragmentation were studied in isolated nuclei of rat liver and rat ascites hepatoma AH-130 cells. Liver and hepatoma cell nuclei formed the same amount of poly(ADP-Rib) per mg of nuclear DNA from NAD. Preincubation of liver nuclei with NAD repressed DNA polymerase activity to 30% of that of the control, but preincubation of hepatoma cell nuclei with NAD did not affect DNA polymerase activity. It was also found that incubation of liver nuclei with NAD prevented the fragmentation of nuclear DNA which occurred without NAD. Incubation of hepatoma cell nuclei with or without NAD did not result in fragmentation of DNA. The role of endonuclease in primer formation for DNA synthesis is discussed.  相似文献   

20.
Hepatitis B virus (HBV) may contribute to hepatocarcinogenesis by blocking p53 function. A p53 response element-like binding sequences, TGCCT?TGCCT, was found in HBV genome. To clarify whether HBV DNA can, like some other DNA viruses, bind to P53 protein and form a DNA-protein complex, we used a series of plasmids encoding full-length or mutant HBV or p53 fragments to determine the binding ability of HBV DNA after cotransfected into cells by electrophoretic mobility shift (and supershift) assay. We found that HBV DNA could bind to P53 protein and form DNA-protein complexes in human hepatoma cell lines. Cotransfection with p53 and HBV DNA increased the replication of HBV, CAT activity, tumor cell apoptosis, and cytoplasmic P53 accumulation in the hepatoma cells. In conclusions, our observations suggest that the interaction of HBV and p53 at the levels of protein-protein and DNA-protein, which resulted in inactivation of p53 transactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号