首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.  相似文献   

2.
Adsorption of T4 bacteriophage to the Escherichia coli host cell is mediated by six long and six short tail fibres. After at least three long tail fibres have bound, short tail fibres extend and bind irreversibly to the core region of the host cell lipopolysaccharide (LPS), serving as inextensible stays during penetration of the cell envelope by the tail tube. The short tail fibres consist of a parallel, in-register, trimer of gene product 12 (gp12). The 1.9 A crystal structure of a heat and protease-stable fragment of gp12 reveals three new folds: a central right-handed triple beta-helix, a globular C-terminal domain containing a beta-sandwich and an N-terminal beta-structure reminiscent of but different from the adenovirus triple beta-spiral. The centre of the C-terminal domain shows weak homology to gp11, a trimeric protein connecting the short fibre to the base-plate, suggesting that the trimerisation motifs of gp11 and gp12 are similar. Repeating sequence motifs suggest that the N-terminal beta-structure extends further towards the N terminus and is conserved in the long tail fibre proteins gp34 and gp37.  相似文献   

3.
Avian reovirus fibre, a homo-trimer of the sigmaC protein, is responsible for primary host cell attachment. The protein expressed in bacteria forms elongated fibres comprised of a carboxy-terminal globular head domain and a slender shaft, and partial proteolysis yielded a carboxy-terminal protease-stable domain that was amenable to crystallisation. Here, we show that this fragment retains receptor-binding capability and report its structure, solved using two-wavelength anomalous diffraction and refined using data collected from three different crystal forms at 2.1 angstroms, 2.35 angstroms and 3.0 angstroms resolution. The carboxy-terminal globular domain has a beta-barrel fold with the same overall topology as the mammalian reovirus fibre (sigma1). However, the monomers of the sigmaC trimer show a more splayed-out arrangement than in the sigma1 structure. Also resolved are two triple beta-spiral repeats of the shaft or stalk domain. The presence in the sequence of heptad repeats amino-terminal to these triple beta-spiral repeats suggests that the unresolved portion of the shaft domain contains a triple alpha-helical coiled-coil structure. Implications for the function and stability of the sigmaC protein are discussed.  相似文献   

4.
Adenovirus fibres are trimeric proteins that protrude from the 12 fivefold vertices of the virion and are the cell attachment organelle of the virus. They consist of three segments: an N-terminal tail, which is noncovalently attached to the penton base, a thin shaft carrying 15 amino acid pseudo repeats, and a C-terminal globular head (or knob) which recognizes the primary cell receptor. Due to their exceptional stability, which allows easy distinction of native trimers from unfolded forms and folding intermediates, adenovirus fibres are a very good model system for studying folding in vivo and in vitro. To understand the folding and stability of the trimeric fibres, the unfolding pathway of adenovirus 2 fibres induced by SDS and temperature has been investigated. Unfolding starts from the N-terminus and a stable intermediate accumulates that has the C-terminal head and part of the shaft structure (shown by electron microscopy). The unfolded part can be digested away using limited proteolysis, and the precise digestion sites have been determined. The remaining structured fragment is recognized by monoclonal antibodies that are specific for the trimeric globular head and therefore retains a native trimeric structure. Taken together, our results indicate that adenovirus fibres carry a stable C-terminal domain, consisting of the knob with five shaft-repeats.  相似文献   

5.
SMC (structural maintenance of chromosomes) proteins are large coiled-coil proteins involved in chromosome condensation, sister chromatid cohesion, and DNA double-strand break processing. They share a conserved five-domain architecture with three globular domains separated by two long coiled-coil segments. The coiled-coil segments are antiparallel, bringing the N and C-terminal globular domains together. We have expressed a fusion protein of the N and C-terminal globular domains of Thermotoga maritima SMC in Escherichia coli by replacing the approximately 900 residue coiled-coil and hinge segment with a short peptide linker. The SMC head domain (SMChd) binds and condenses DNA in an ATP-dependent manner. Using selenomethionine-substituted protein and multiple anomalous dispersion phasing, we have solved the crystal structure of the SMChd to 3.1 A resolution. In the monoclinic crystal form, six SMChd molecules form two turns of a helix. The fold of SMChd is closely related to the ATP-binding cassette (ABC) ATPase family of proteins and Rad50, a member of the SMC family involved in DNA double-strand break repair. In SMChd, the ABC ATPase fold is formed by the N and C-terminal domains with the 900 residue coiled-coil and hinge segment inserted in the middle of the fold. The crystal structure of an SMChd confirms that the coiled-coil segments in SMC proteins are anti-parallel and shows how the N and C-terminal domains come together to form an ABC ATPase. Comparison to the structure of the MukB N-terminal domain demonstrates the close relationship between MukB and SMC proteins, and indicates a helix to strand conversion when N and C-terminal parts come together.  相似文献   

6.
The C-terminal domain of T4 fibritin (foldon) is obligatory for the formation of the fibritin trimer structure and can be used as an artificial trimerization domain. Its native structure consists of a trimeric beta-hairpin propeller. At low pH, the foldon trimer disintegrates into a monomeric (A-state) form that has similar properties as that of an early intermediate of the trimer folding pathway. The formation of this A-state monomer from the trimer, its structure, thermodynamic stability, equilibrium association and folding dynamics have been characterized to atomic detail by modern high-resolution NMR techniques. The foldon A-state monomer forms a beta-hairpin with intact and stable H-bonds that is similar to the monomer in the foldon trimer, but lacks a defined structure in its N and C-terminal parts. Its thermodynamic stability in pure water is comparable to designed hairpins stabilized in alcohol/water mixtures. Details of the thermal unfolding of the foldon A-state have been characterized by chemical shifts and residual dipolar couplings (RDCs) detected in inert, mechanically stretched polyacrylamide gels. At the onset of the thermal transition, uniform relative changes in RDC values indicate a uniform decrease of local N-HN and Calpha-Halpha order parameters for the hairpin strand residues. In contrast, near-turn residues show particular thermal stability in RDC values and hence in local order parameters. This coincides with increased transition temperatures of the beta-turn residues observed by chemical shifts. At high temperatures, the RDCs converge to non-zero average values consistent with predictions from random chain polymer models. Residue-specific deviations above the unfolding transition reveal the persistence of residual order around proline residues, large hydrophobic residues and at the beta-turn.  相似文献   

7.
Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core finger domain, while the side chains of Ser68 and Asn75 appear to form hydrogen bonds that stabilize the overall fold of this domain. These residues outside of the core finger structure are conserved in D-type and related retroviral NCPs, e.g., MMTV NCP, suggesting that the structure of MPMV NCP may be representative of this subclass of retroviral NCPs.  相似文献   

8.
The adenovirus fibre is a trimeric protein with a globular head on a long thin shaft that projects from the twelve fivefold vertices of the virion. The shaft region of the fibre primary sequence has a unique pseudo-repeating motif of 15 residues. Using constraints derived from sequence analysis, the trimeric nature of the fibre, the experimental determination of the shaft length and general knowledge about protein structure, an atomic model of the fibre shaft has been constructed by computer modelling techniques. In the final model the three monomers form a left-handed triple-helical structure with threefold symmetry and with successive 15-residue repeats on the same chain related by an axial rise of 13.1 A and a left-handed azimuthal rotation of close to 300 degrees. Three threefold related beta-sheets with short strands are formed by inter-monomer main-chain hydrogen bonds giving rise to superhelical ribbons covering the surface of the shaft. The model satisfies criteria of extensive hydrogen bonding, reasonable backbone torsion angles, burial of most hydrophobic residues and good packing of the hydrophobic core. Furthermore, the model is consistent with the observed shaft length of about 290 A and its calculated X-ray fibre diffraction patterns shows the characteristic features found in the diffraction pattern of crystals of fibre, notably layer lines with a spacing of about 1/26 A-1 and strong meridional intensity at 1/4.4 A-1.  相似文献   

9.
Fibrous proteins found in natural materials such as silk fibroins, spider silks, and viral spikes increasingly serve as a source of inspiration for the design of novel, artificial fibrous materials. The fiber protein from the adenovirus has previously served as a model for the design of artificial, self-assembling fibers. The fibrous shaft of this protein consists of 15-amino-acid sequence repeats that fold into a triple β-spiral motif in their native context. Recombinant proteins based on multimers of simplified consensus shaft repeats were previously reported to form self-assembling fibrils from which filaments could be spun. Here, we describe the structural characterization of these fibrils; X-ray fiber diffraction, Raman spectroscopy, and Congo Red binding strongly suggest an amyloid-type structure for these fibrils, with β-strands arranged perpendicular to the fibril axis. This amyloid structure is distinct from the native β-spiral fold, and similar to amyloid structures formed by short, synthetic peptides corresponding to shaft sequences. We discuss implications for the rational design of novel fibrous materials, based on crystal structure information and knowledge of folding and assembly pathways of natural fibrous proteins.  相似文献   

10.
Bharath MM  Chandra NR  Rao MR 《Proteins》2002,49(1):71-81
In eukaryotes, histone H1 promotes the organization of polynucleosome filaments into chromatin fibers, thus contributing to the formation of an important structural framework responsible for various DNA transaction processes. The H1 protein consists of a short N-terminal "nose," a central globular domain, and a highly basic C-terminal domain. Structure prediction of the C-terminal domain using fold recognition methods reveals the presence of an HMG-box-like fold. We recently showed by extensive site-directed and deletion mutagenesis studies that a 34 amino acid segment encompassing the three S/TPKK motifs, within the C-terminal domain, is responsible for DNA condensing properties of H1. The position of these motifs in the predicted structure corresponds exactly to the DNA-binding segments of HMG-box-containing proteins such as Lef-1 and SRY. Previous analyses have suggested that histone H1 is likely to bend DNA bound to the C-terminal domain, directing the path of linker DNA in chromatin. Prediction of the structure of this domain provides a framework for understanding the higher order of chromatin organization.  相似文献   

11.
Recombinant expression of collagens and fragments of collagens is often difficult, as their biosynthesis requires specific post-translational enzymes, in particular prolyl 4-hydroxylase. Although the use of hydroxyproline-deficient variants offers one possibility to overcome this difficulty, these proteins usually differ markedly in stability when compared with the hydroxyproline-containing analogs. Here, we report a method to stabilize collagen-like peptides by fusing them to the N terminus of the bacteriophage T4 fibritin foldon domain. The isolated foldon domain and the chimeric protein (GlyProPro)(10)foldon were expressed in a soluble form in Escherichia coli. The recombinant proteins and the synthetic (ProProGly)(10) peptide were characterized by circular dichroism (CD) spectroscopy, differential scanning calorimetry, and analytical ultracentrifugation. We show that the foldon domain, which comprises only 27 amino acid residues, forms an obligatory trimer with a high degree of thermal stability. The CD thermal unfolding profiles recorded from foldon are monophasic and completely reversible upon cooling. Similar Van't Hoff and calorimertic enthalpy values of trimer formation indicated a cooperative all-or-none transition. As reported previously, (ProProGly)(10) peptides form collagen triple helices of only moderate stability. When fused to the foldon domain, however, triple helix formation of (GlyProPro)(10) is concentration independent, and the midpoint temperature of the triple helix unfolding is significantly increased. The stabilizing function of the trimeric foldon domain is explained by the close vicinity of its N termini, which induce a high local concentration in the range of 1 M for the C termini of the collagen-like-peptide. Collagen-foldon fusion proteins should be potentially useful to study receptor-collagen interactions.  相似文献   

12.
Bacteriophage T4 fibritin is a triple-stranded, parallel, segmented alpha-helical coiled-coil protein. Earlier we showed that the C-terminal globular domain (foldon) of fibritin is essential for correct trimerization and folding of the protein. We constructed the chimerical fusion protein W31 in which the fibritin foldon sequence is followed by the small globular non-alpha-helical protein gp31 of the T4 phage. We showed that the foldon is capable of trimerization in the absence of the coiled-coil part of fibritin. A deletion mutant of fibritin (NB1) with completely deleted foldon is unable to fold and trimerize correctly. An excess of this mutant protein did not influence the refolding of fibritin in vitro, and the chimerical protein inhibited this process efficiently. Our conclusion is that the trimerization of the foldon is the initial step of fibritin refolding and is followed by the formation of the coiled-coil structure.  相似文献   

13.
In a designed fusion protein the trimeric domain foldon from bacteriophage T4 fibritin was connected to the C terminus of the collagen model peptide (GlyProPro)(10) by a short Gly-Ser linker to facilitate formation of the three-stranded collagen triple helix. Crystal structure analysis at 2.6 A resolution revealed conformational changes within the interface of both domains compared with the structure of the isolated molecules. A striking feature is an angle of 62.5 degrees between the symmetry axis of the foldon trimer and the axis of the triple helix. The melting temperature of (GlyProPro)(10) in the designed fusion protein (GlyProPro)(10)foldon is higher than that of isolated (GlyProPro)(10,) which suggests an entropic stabilization compensating for the destabilization at the interface.  相似文献   

14.
Apart from alpha-helical coiled coils and the collagen triple helices, fibrous proteins can contain beta-structure in various conformations. Elongated enzymes such as pectate lyase and the bacteriophage P22 tailspike protein contain single-stranded beta-helices. Virus and bacteriophage fibers, which are often trimeric, have been shown to contain novel triple-stranded beta-structures such as the triple beta-spiral and the triple beta-helix. The conformation and folding of viral fibers containing beta-structure are discussed.  相似文献   

15.
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.  相似文献   

16.
Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.  相似文献   

17.
The foldon domain constitutes the C-terminal 30 amino acid residues of the trimeric protein fibritin from bacteriophage T4. Its function is to promote folding and trimerization of fibritin. We investigated structure, stability and folding mechanism of the isolated foldon domain. The domain folds into the same trimeric beta-propeller structure as in fibritin and undergoes a two-state unfolding transition from folded trimer to unfolded monomers. The folding kinetics involve several consecutive reactions. Structure formation in the region of the single beta-hairpin of each monomer occurs on the submillisecond timescale. This reaction is followed by two consecutive association steps with rate constants of 1.9(+/-0.5)x10(6)M(-1)s(-1) and 5.4(+/-0.3)x10(6)M(-1)s(-1) at 0.58 M GdmCl, respectively. This is similar to the fastest reported bimolecular association reactions for folding of dimeric proteins. At low concentrations of protein, folding shows apparent third-order kinetics. At high concentrations of protein, the reaction becomes almost independent of protein concentrations with a half-time of about 3 ms, indicating that a first-order folding step from a partially folded trimer to the native protein (k=210 +/- 20 s(-1)) becomes rate-limiting. Our results suggest that all steps on the folding/trimerization pathway of the foldon domain are evolutionarily optimized for rapid and specific initiation of trimer formation during fibritin assembly. The results further show that beta-hairpins allow efficient and rapid protein-protein interactions during folding.  相似文献   

18.
Reovirus attaches to cellular receptors with the sigma1 protein, a fiber-like molecule protruding from the 12 vertices of the icosahedral virion. The crystal structure of a receptor-binding fragment of sigma1 reveals an elongated trimer with two domains: a compact head with a new beta-barrel fold and a fibrous tail containing a triple beta-spiral. Numerous structural and functional similarities between reovirus sigma1 and the adenovirus fiber suggest an evolutionary link in the receptor-binding strategies of these two viruses. A prominent loop in the sigma1 head contains a cluster of residues that are conserved among reovirus serotypes and are likely to form a binding site for junction adhesion molecule, an integral tight junction protein that serves as a reovirus receptor. The fibrous tail is mainly responsible for sigma1 trimer formation, and it contains a highly flexible region that allows for significant movement between the base of the tail and the head. The architecture of the trimer interface and the observed flexibility indicate that sigma1 is a metastable structure poised to undergo conformational changes upon viral attachment and cell entry.  相似文献   

19.
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular domains, designated HD1 (residues 41–118) and HD2 (residues 171–252), that are homologous to histone H5 from chicken erythrocytes. We have determined the three-dimensional structure of globular domain HD1 with high precision by heteronuclear magnetic resonance spectroscopy. The structure had a winged helix–turn–helix motif composed of an αβααββ fold and closely resembled the structure of the globular domain of histone H5. Interestingly, the second globular domain, HD2, in Hho1p was unstructured under physiological conditions. Gel mobility assay demonstrated that Hho1p preferentially binds to supercoiled DNA over linearized DNA. Furthermore, NMR analysis of the complex of a deletion mutant protein (residues 1–118) of Hho1p with a linear DNA duplex revealed that four regions within the globular domain HD1 are involved in the DNA binding. The above results suggested that Hho1p possesses properties similar to those of linker histones in higher eukaryotes in terms of the structure and binding preference towards supercoiled DNA.  相似文献   

20.
Collagen is a popular biomaterial in many specific biological interactions as well as a structural element. In this work, the recombinant collagen-like proteins were synthesized using Escherichia coli expression system. A foldon sequence, GYIPEAPRDGQAYVRKDGEWVLLSTFL, derived from the native T4 phage fibritin was incorporated at the C-terminal of collagen-like protein molecules to stabilize the triple helix formed in the proteins. The differential scanning calorimetry and thermogravimetric analysis measurements showed that the thermostability of the recombinant collagen-like proteins was significantly improved when compared with those without the foldon sequence at the C-terminal. Fourier transform infrared and scanning electron microscopy observations indicated that the collagen-like proteins forms the triple helix structure and prefer to aggregate as fibrils, same as the native collagen. Moreover, the mice fibroblasts L929 cells could attach and grew very well on the recombinant collage-like proteins. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the cell biocompatibility of collagen-like proteins produced in this work was even better than that of native collagen, suggesting that the collagen-like proteins may be a satisfactory candidate for the future applications as a biomaterial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号