首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether diabetes alters chromatin structure in vivo, micrococcal nuclease digestion kinetics were analyzed in cerebral cortical and hepatic nuclei of streptozotocin-induced diabetic rats. Cerebral nuclei of diabetic rats maintained for 6 weeks were less susceptible to micrococcal nuclease digestion compared with control rats. Insulin treatment reversed diabetes-related changes in nuclease digestion kinetics. There were no changes in the kinetics of digestion in hepatic nuclei. The reduced digestibility of cerebral DNA in diabetes could not be attributed to altered DNA fluorescence spectra, or altered distribution of most abundant chromatin proteins that were either solubilized or that remained insoluble immediately following nuclease digestion. It is concluded that chronic, uncontrolled hyperglycemia can alter chromatin structure of some tissues in vivo, and this change is probably related to subtle alterations in DNA-protein interactions.  相似文献   

2.
The search for proteins involved in maintaining higher order chromatin structures has led to a systematic examination of the non-histone proteins (NHP) of rat liver nuclei in the context of nuclease digestion studies. 40-45% of the 3H-tryptophan labelled NHP originally present could be removed by extensive washing in a "physiological" buffer, incubation at 37 degrees C with or without nuclease and a further wash step. Nuclei at this stage had a remarkably constant NHP content (ca. 0.73 micrograms/micrograms DNA), independent of the degree of digestion with micrococcal nuclease or HaeIII. The solubilized chromatin produced by limited digestion with either nuclease contained 0.3-0.5 microgram NHP/microgram DNA, this value falling to ca. 0.16 after more extensive cleavage. Insoluble chromatin fractions were between 2-fold (very limited digestion) and 16-fold (extensive digestion) richer in NHP than the corresponding soluble fractions. Gel electrophoresis revealed about 12 NHP bands in soluble fractions, the most prominent of M.Wt. 41.400, while the insoluble material had at least 50 components. These properties were independent of whether lysis of nuclei occurred in 0.2 or 50 mM ionic strength. The large disparity in NHP content between complementary soluble and insoluble chromatin fractions is considered in terms of chromatin organization in vivo and the possible role of NHP migration.  相似文献   

3.
A chromatin fraction solubilized from mouse myeloma nuclei under near-physiological ionic conditions by very mild micrococcal nuclease digestion at 0°C is enriched at least 7-fold in DNA complementary to total myeloma polyadenylated mRNA, and 15-fold in DNA originating near the replication fork (labeled within 30 s). Newly replicated DNA recovered in solubilized chromatin after brief labeling was incorporated mainly into particles sedimenting with, or faster than, mononucleosomes. A rapid decrease in enrichment of newly replicated DNA in readily released, soluble chromatin with increasing labeling times indicated that newly replicated chromatin matured within 90 s to a form that was partitioned similarly to bulk chromatin by this fractionation method. Previous studies showed that chromatin readily solubilized from myeloma nuclei is enriched in high-mobility-group (HMG) and other non-histone proteins, RNA and single-stranded DNA; and depleted in H1 and 5-methylcytosine, relative to bulk chromatin (Jackson, J.B., Pollock, J.M., Jr., and Rill, R.L. (1979) Biochemistry 18, 3739–3748). Mild digestion of chicken erythrocyte nuclei with micrococcal nuclease yielded a soluble chromatin fraction (1–2% of the total DNA) with similar properties. This fraction was enriched at least 6-fold in DNA complementary to chicken globin mRNA, relative to total erythrocyte DNA.  相似文献   

4.
Chromatin in isolated rat liver nuclei was compared with chromatin in (i) nuclei depleted of H1 by acid extraction; (ii) nuclei treated at pH 3.2 (without removal of H1), and (iii) depleted nuclei following reassociation of H1. Electron microscopy and digestion by DNase I, micrococcal nuclease and endogenous Ca/Mg endonuclease were used for this comparative examination. Electron micrographs of H1-depleted nuclei showed a dispersed and finely granular appearance. The rate of DNA cleavage by micrococcal nuclease or DNase I was increased several-fold after H1 removal. Discretely sized intermediate particles produced by Ca/Mg endonuclease in native nuclei were not observed in digests of depleted nuclei. Digestion by micrococcal nuclease to chromatin particles soluble in 60 mM NaCl buffer appeared not to be affected in depleted nuclei. When nuclei were treated at pH 3.2, neither the appearance of chromatin in electron micrographs nor the mode or rate of nuclease digestion changed appreciably. Following reassociation of H1 to depleted nuclei, electron micrographs demonstrated the reformation of compacted chromatin, but the lower rate of DNA cleavage in native nuclei was not restored. Further, H1 reassociation produced a significant decrease in the solubility of nuclear chromatin cleaved by micrococcal nuclease or Ca/Mg endonuclease. In order to evaluate critically the reconstitution of native chromatin from H1-depleted chromatin we propose the use of digestion by a variety of nucleases in addition to an electron microscopic examination.  相似文献   

5.
We have examined the effects of histone hyperacetylation upon nuclease digestion of nuclei and subsequent fractionation of chromosomal material in the presence of MgCl2. DNase I shows a maximum sensitivity towards hyperacetylated nuclei at somewhat elevated ionic strengths (150-200 mM NaCl), whereas micrococcal nuclease exhibits no specificity for acetylated nuclei over a broad range of ionic strengths. Fractionation in the presence of MgCl2 of hyperacetylated nuclei digested with micrococcal nuclease results in a substantial increase in the amount of soluble chromatin relative to that obtained with control nuclei. This increased yield of Mg2+-soluble chromatin results from the recruitment into this fraction of oligonucleosomes containing extremely hyperacetylated histones. These results suggest that contiguous nucleosomes containing highly acetylated histones may be altered in their ability to interact with themselves and with other nucleosomes.  相似文献   

6.
G0, G1, and mammalian cells and nuclei were shortly digested with either micrococcal nuclease or DNAse I, both before and after mild fixation, either before (G0) or after (G1) partial hepatectomy. Cells were Feulgen stained and examined by high resolution light microscopy. In metabolically active G1 nuclei, intranuclear DNA appears organized at least in two distinct domains, whereby, the highly dispersed one is large enough to be detected at the resolution of the light microscope and appears preferentially attacked by limited DNAse I digestion. The action of the enzyme is readily apparent only in the nuclei that are first digested and then fixed. Spectroscopic characterization of the same nuclei reveals that the fixation causes a sizeable removal of proteins, mostly in the soluble chromatin subfraction. Results are discussed in terms of two control levels for gene expression and for higher order DNA structure.  相似文献   

7.
8.
G0, G1, and mammalian cells and nuclei were shortly digested with either micrococcal nuclease or DNAse I, both before and after mild fixation, either before (G0) or after (G1) partial hepatectomy. Cells were Feulgen stained and examined by high resolution light microscopy. In metabolically active G1 nuclei, intranuclear DNA appears organized at least in two distinct domains, whereby the highly dispersed one is large enough to be detected at the resolution of the light microscope and appears preferentially attacked by limited DNAse I digestion. The action of the enzyme is readily apparent only in the nuclei that are first digested and then fixed. Spectroscopic characterization of the same nuclei reveals that the fixation causes a sizeable removal of proteins, mostly in the soluble chromatin subfraction. Results are discussed in terms of two control levels for gene expression and for higher order DNA structure.  相似文献   

9.
The organization of chromatin in three rat liver nuclear populations, namely diploid stromal, diploid parenchymal, and tetraploid parenchymal nuclei, which were separated by zonal centrifugation, was studied by digestion with micrococcal nuclease and pancreatic deoxyribonuclease in 3-week-old rats in which the parenchymal cells contain diploid nuclei and in 2-and 4-month-old rats with a high proportion of tetraploid nuclei. Digestion by micrococcal nuclease allowed the estimation of DNA-repeat length in chromatin. Parenchymal nuclei have shorter repeat length than stromal nuclei and DNA-repeat length increases with the age in all three nuclei populations. The kinetics of digestion by micrococcal nuclease showed that nuclei with shorter repeat length are more sensitive to micrococcal nuclease and that the sensitivity of chromatin decreases with age for all the types of nuclei in this study. The kinetics of digestion by pancreatic deoxyribonuclease showed that sensitivity of chromatin is related to the repeat length and that the sensitivity decreases with the ages.  相似文献   

10.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

11.
A hyperthermic shift in the hyperchromicity curve of thermally denatured swine aortic-smooth-muscle-cell chromatin solubilized by digestion of nuclei with micrococcal nuclease was observed after the chromatin was incubated under conditions to allow poly-(ADP-ribose) synthesis by the endogenous poly(ADP-ribose) polymerase. When the order of solubilization and poly(ADP-ribosyl)ation was reversed, a smaller proportion of the solubilized chromatin exhibited greater thermal stability. Nuclease digestion of nuclei preincubated for poly(ADP-ribose) synthesis revealed no difference in kinetics of digestion or fragment size distribution compared to that of control nuclei. Poly(ADP-ribose) synthesis in these nuclei was proportionately greater in the chromatin fraction most resistant to solubilization by micrococcal nuclease treatment.  相似文献   

12.
13.
14.
The structural properties of barley oligonucleosomes are investigated and compared to those of rat liver oligomers. Extraction of barley chromatin was performed using mild nuclease digestion of isolated nuclei leading to a low ionic strength soluble fraction. Oligonucleosomes were fractionated on sucrose gradients and characterized for DNA and histone content. Physico-chemical studies (sedimentation, circular dichroism and electric birefringence) showed that barley oligonucleosomes exhibit properties very close to those of the H1-depleted rat liver counterparts. Moreover, in situ, barley linker DNA was more sensitive to micrococcal nuclease digestion than that of rat liver. These results suggest that barley oligonucleosomes show a less compact structure than their rat liver counterparts and appear to be in contradiction with the very condensed organization of barley chromatin previously suggested.  相似文献   

15.
Replicating chromatin is known to be more sensitive to micrococcal nuclease than bulk chromatin. We have used this property and a fractionation procedure based on the specific release of replicating material under mild micrococcal nuclease digestion, in order to analyse both the kinetics of maturation of newly replicated DNA into nucleosomes and the structure of the replicating material. As other authors, we initially observed that repetitive unit of newly replicated chromatin was shorter than that of bulk chromatin, however this result appears to be due to sliding of nucleosomes along the chromatin fibers close to the replicating fork. Replicative chromatin was fractionated and analysed. A prenucleosomal peak was observed and preliminary characterized.  相似文献   

16.
A sensitive method for measuring nuclear volumes with a Coulter counter is described. It has been applied to the digestion of chicken erythrocyte nuclei by micrococcal nuclease and DNase I. Early in digestion, micrococcal nuclease induced a 20% increase in the effective spherical volume of the nuclei, followed by a gradual reduction. At the peak of nuclear swelling, about 17% of the chromatin was soluble after lysis and its average chain length was about 18 kilobase pairs (kb). DNase I digestion did not give rise to a corresponding expansion of the nuclei. Several preparation conditions, including the treatment of nuclei with 0.2% Triton X-100, led to a loss of the expansion effect upon subsequent micrococcal nuclease digestion. The results support the domain theory of higher order chromatin structure. In the context of this model, the observed maximum nuclear expansion correlates with an average of one nuclease scission per domain.  相似文献   

17.
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.  相似文献   

18.
Chromatin prepared by micrococcal nuclease digestion of nuclei and fractionated by sucrose density gradient ultracentrifugation selfredigests to a higher percentage of monomer DNA at a rate which depends on the enzyme concentration in the initial digestion. Thus, micrococcal nuclease becomes part of the native chromatin structure. A degree of caution should therefore be exercised when handling material prepared by this technique.  相似文献   

19.
The structure of chromatin containing amplified N-myc in neuroblastoma and retinoblastoma cells was investigated using micrococcal nuclease digestion of isolated nuclei. The size distribution of DNA fragments containing N-myc, produced by micrococcal nuclease digestion of nuclei, was determined and compared to that of DNA containing the structural gene for dihydrofolate reductase. A perturbation of the native structure of chromatin containing N-myc was evident from the association of N-myc with more extensively digested DNA when compared with chromatin containing dihydrofolate reductase.  相似文献   

20.
Mobility of histones on the chromosome of simian virus 40.   总被引:17,自引:0,他引:17  
P Beard 《Cell》1978,15(3):955-967
Linear simian virus 40 (SV40) chromosomes were prepared by Eco R1 nuclease cleavage of the circular SV40 chromosomes released from virions with dithiothreitol at pH 9,8. Chromatin-DNA hybrids were constructed with segments of 3H-labeled, naked SV40 DNA covalently joined via the Eco R1-generated cohesive ends to segments of linear SV40 chromosome. Upon incubation of chromatin-DNA hybrids at 37 degrees C and moderate ionic strength, histones migrated onto the labeled DNA while retaining the nucleosome structure. This was shown first, by the pattern of micrococcal nuclease digestion of labeled DNA; second by nitrocellulose filter binding of labeled DNA after redigestion of the chromatin-DNA hybrids with Eco R1; and third, by examination of chromatin-DNA hybrids in the electron microscope. Migration was slow, being apparent after several hours. Parallel experiments in which naked DNA and chromosomes were mixed without joining showed no transfer of nucleosomal histones between DNA molecules. The kinetics of Eco R1 cleavage of the DNA in virion-derived SV40 chromosomes are also consistent with the notion that nucleosomal histones, in the absence of other proteins, can move on DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号