首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indolepyruvate ferredoxin oxidoreductase (IOR) catalyzes the oxidative decarboxylation of arylpyruvates. Gene cloning and sequencing analysis of the IOR gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was performed. Two genes, iorA and iorB, encoding α and β subunits of IOR were found to be tandemly arranged, which suggests that gene expression is translationaly coupled. Sequence analysis showed the C-terminal region of the α subunit to have a typical ferredoxin-type [4Fe-4S] cluster motif (CXXCXXCXXCXXXCP), which is similar to that present in the δ subunits of other oxidoreductases such as pyruvate ferredoxin oxidoreductase (POR) and 2-ketoisovalerate ferredoxin oxidoreductase (VOR). We suggest that the α subunit of KOD1-IOR has a mosaic structure composed of features characteristic of the α, β and δ subunits from POR and VOR. KOD1-IOR was overproduced in anaerobically incubated Escherichia coli cells and the crude enzyme was extracted under anaerobic conditions. The optimal temperature for activity of recombinant IOR was 70° C and the half-life of this enzyme in the presence of air was 15 min at 25° C. Received: 25 September 1996 / Accepted: 20 December 1996  相似文献   

2.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25° C and temperature-sensitive for growth above 33° C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology. Received: 18 September 1996 / Accepted: 22 October 1996  相似文献   

3.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

4.
Using AnCP (Aspergillus nidulans CCAAT-binding protein) as a CCAAT-specific binding factor model, the possibility that one factor is able to recognize CCAAT sequences in several different genes in A.␣nidulans was examined. DNase I protection analysis showed that AnCP specifically bound to CCAAT sequence-containing regions comprising 21 to 36 bp of the taa, amdS and gatA genes. Furthermore, replacement of the CCAAT sequence with CGTAA was found to abolish the binding of AnCP and to have an inhibitory effect on taa promoter activity. This clearly demonstrates a positive function of the CCAAT element. However, amylase was induced by starch and repressed by glucose in a CCAAT-box disruptant, as in wild-type cells. Received: 28 June 1996 / Accepted: 7 October 1996  相似文献   

5.
The gene cluster (ery) governing the biosynthesis of the macrolide antibiotic erythromycin A by Saccharopolyspora erythraea contains, in addition to the eryA genes encoding the polyketide synthase, two regions containing genes for later steps in the pathway. The region 5′ of eryA that lies between the known genes ermE (encoding the erythromycin resistance methyltransferase) and eryBIII (encoding a putative S-adenosylmethionine-dependent methyltransferase), and that contains the gene eryBI (orf2), has now been sequenced. The inferred product of the eryBI gene shows striking sequence similarity to authentic β-glucosidases. Specific mutants were created in eryBI, and the resulting strains were found to synthesise erythromycin A, showing that this gene, despite its position in the biosynthetic gene cluster, is not essential for erythromycin biosynthesis. A␣mutant in eryBIII and a double mutant in eryBI and eryBIII were obtained and the analysis of novel erythromycins produced by these strains confirmed the proposed function of EryBIII as a C-methyltransferase. Also, a chromosomal mutant was constructed for the previously sequenced ORF19 and shown to accumulate erythronolide B, as expected for an eryB mutant and consistent with its proposed role as an epimerase in dTDP-mycarose biosynthesis. Received: 13 August 1997 / Accepted: 27 November 1997  相似文献   

6.
In order to study the role of signal transduction pathways in the regulation of morphology in Neurospora crassa, we cloned and characterized a ras homologue, termed NC-ras2. The predicted protein product of this gene is composed of 229 amino acid residues and contains all the consensus sequences shared by the ras protein family. The gene is located in linkage group V. An NC-ras2 disruptant showed morphological characteristics very similar to those of the smco7 mutant, which also maps to linkage group V. Nucleotide sequence analysis revealed that the smco7 mutant harbored a single base deletion in the NC-ras2 gene, which is predicted to result in the truncation of the protein product. Introduction into the smco7 mutant of an NC-ras2 clone yielded stable transformants with a wild-type phenotype. The smco7 mutant exhibited very slow hyphal growth and the rate of conidial formation was approximately one two-hundredth of wild type. The smco7 mutation causes both the changes in the pattern of hyphal growth and the defects in cell wall synthesis. Both the diameter and the length of the apical compartment were shorter in the hyphae of the smco7 mutant. These results suggest that NC-ras2 is identical to smco7, and that the signal transduction pathway mediated by the NC-ras2 protein regulates the apical growth of hyphae, cell wall synthesis, and conidial formation in N. crassa. Received: 1 October 1996 / Accepted: 9 December 1996  相似文献   

7.
8.
We have characterized the only mutation detected so far in S-Pcf, the mitochondrial cytoplasmic male sterility (CMS)-specific locus of petunia. This locus consists of three open reading frames (ORFs): the first contains part of atp9, an intron-less cox2 pseudogene (which does not contain the original cox2 ATG) and the unidentified reading frame urf-s; the second and third ORFs correspond to the only copies of nad3 and rps12 genes in the genome, respectively. In the cell line R13-138, which was generated from a male-sterile somatic hybrid (line SH13-138), a change in the first ORF of the S-Pcf locus has been characterized: the atp9 sequence has been lost, while exon1 of the normal copy of the cox2 gene (including the original ATG sequence) and the adjacent 5′ sequence of the petunia recombination repeat, have been introduced. The data suggest that this reorganization of mtDNA is the consequence of a homologous recombination event involving part of the cox2 coding region, and that the cox2 coding region may serve as an active site for inter- or intra-mtDNA homologous recombination. The results further suggest that in line SH13-138 (or during its maintenance in tissue culture), segregation of the S-Pcf-containing mtDNA molecules has occurred, and the mutant mtDNA is now predominant in the population. Received: 9 September 1996 / Accepted: 27 January 1997  相似文献   

9.
The Pseudomonas aeruginosa leuB gene, encoding 3-isopropylmalate dehydrogenase, was identified upstream of asd, encoding aspartate-β-semialdehyde dehydrogenase. Genetic analysis indicated that leuB is identical to the previously mapped gene defined by the leu-10 allele. The chromosomal leuB locus was inactivated by gene replacement. The insertions had no adverse effect on expression of the downstream asd gene but resulted in leucine auxotrophy. The leuB gene encodes a protein containing 360 amino acids (with a molecular weight of 39153), which was expressed in Escherichia coli as a M, 42000 protein. The results suggested that, in contrast to the situation in other bacteria (E. coli, Salmonella typhimurium and Bacillus subtilis) the P. aeruginosa leuB gene is physically separated from the genes encoding the other enzymes of the isopropylmalate pathway. Received: 15 August 1996 / Accepted: 23 October 1996  相似文献   

10.
11.
A number of DNA damage-inducible genes (DIN) have been identified in Saccharomyces cerevisiae. In the present study we describe isolation of a novel gene, Din7, the expression of which is induced by exposure of cells to UV light, MMS (methyl methanesulfonate) or HU (hydoxyurea). The DNA sequence of DIN7 was determined. By comparison of the predicted Din7 amino acid sequence with those in databases we found that it belongs to a family of proteins which includes S. cerevisiae Rad2 and its Schizosaccharomyces pombe and human homologs Rad13 and XPGC; S. cerevisiae Rad27 and its S. pombe homolog Rad2, and S. pombe Exo I. All these proteins are endowed with DNA nuclease activity and are known to play an important function in DNA repair. The strongest homology to Din7 was found with the Dhs1 protein of S.␣cerevisiae, the function of which is essentially unknown. The expression of the DIN7 gene was studied in detail using a DIN7-lacZ fusion integrated into a chromosome. We show that the expression level of DIN7 rises during meiosis at a time nearly coincident with commitment to recombination. No inducibility of DIN7 was found after treatment with DNA-damaging agents of cells bearing the rad53-21 mutation. Surprisingly, a high basal level of DIN7 expression was found in strains in which the DUN1 gene was inactivated by transposon insertion. We suggest that a form of Dun1 may be a negative regulator of the DIN7 gene expression. Received: 30 May 1996 / Accepted: 26 September 1996  相似文献   

12.
13.
14.
15.
We are developing budding yeast, Saccharomyces cerevisiae, as a genetic system for the study of tolerance to the trivalent aluminum cation (Al3+). We have isolated eight mutants that are more sensitive to Al3+ than the wild type. Each mutant represented a different complementation group. A number of the mutants were pleiotropic, and showed defects in other stress responses, changes in tolerance to other metal cations, or abnormal morphology. Two mutants also showed increased dependence on supplemental Mg2+ and Ca2+. One mutant with a relatively specific sensitivity to Al3+ was chosen for molecular complementation. Normal Al3+ tolerance was restored by expression of the MAP kinase gene SLT2. Strains carrying deletions of the SLT2 gene, or of the gene for the corresponding MAP kinase–kinase SLK1, showed sensitivity to Al3+. These results indicate that the SLT2 MAP kinase signal transduction pathway is required for yeast to sense and respond to Al3+ stress. Received: 17 April 1996 / Accepted: 21 October 1996  相似文献   

16.
17.
The OGG1 gene of Saccharomyces cerevisiae encodes a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. To investigate the biological role of the OGG1 gene, mutants were constructed by partial deletion of the coding sequence and insertion of marker genes, yielding ogg1::TRP1 and ogg1::URA3 mutant strains. The disruption of the OGG1 gene does not compromise the viability of haploid cells, therefore it is not an essential gene. The capacity to repair 8-OxoG has been measured in cell-free extracts of wild-type and ogg1 strains using a 34mer DNA fragment containing a single 8-OxoG residue paired with a cytosine (8-OxoG/C) as a substrate. Cell-free extracts of the wild-type strain efficiently cleave the 8-OxoG-containing strand of the 8-OxoG/C duplex. In contrast, cell-free extracts of the Ogg1-deficient strain have no detectable activity that can cleave the 8-OxoG/C duplex. The biological properties of the ogg1 mutant have also been investigated. The results show that the ogg1 disruptant is not hypersensitive to DNA-damaging agents such as ultraviolet light at 254 nm, hydrogen peroxide or methyl methanesulfonate. However, the ogg1 mutant exhibits a mutator phenotype. When compared to those of a wild-type strain, the frequencies of mutation to canavanine resistance (CanR) and reversion to Lys+ are sevenfold and tenfold higher for the ogg1 mutant strain, respectively. Moreover, using a specific tester system, we show that the Ogg1-deficient strain displays a 50-fold increase in spontaneously occurring G · C→T · A transversions compared to the wild-type strain. The five other base substitution events are not affected by the disruption of the OGG1 gene. These results strongly suggest that endogeneous reactive oxygen species cause DNA damage and that the excision of 8-OxoG catalyzed by the Ogg1 protein contributes to the maintenance of genetic stability in S. cerevisiae. Received: 6 September 1996 / Accepted: 22 October 1996  相似文献   

18.
19.
The Drosophila vitelline membrane protein gene VM32E is expressed according to a precise temporal and spatial program in the follicle cells. Results from germ line transformation experiments using different fragments of the −465/−39 VM32E region fused to the hsp/lacZ reporter gene revealed that the region −348/−39 is sufficient to confer the wild-type expression pattern. Within this segment, distinct cis-regulatory elements control VM32E expression in ventral and dorsal follicle cells. The region between −135/−113 is essential for expression of the VM32E gene in the ventral columnar follicle cells. Expression in the dorsal domain requires the two regions −348/−254 and −118/−39. Furthermore, the region −253/−119 appears to contain a negative element that represses gene activity in anterior centripetal cells. We suggest that the expression of the VM32E gene throughout the follicular epithelium is controlled by specific cis-regulatory elements acting in distinct spatial domains and following a precise developmental program. Received: 22 October 1996 / Accepted: 14 November 1996  相似文献   

20.
A strain of Schizosaccharomyces pombe carrying a disrupted Na+/H+ antiporter gene (sod2::sup3-5), in addition to the common auxotrophic mutations, ade6-216, ura4-D18 and leu1-32, is highly sensitive to media adjusted to pH 6.9. Reversion analysis of this strain yielded a group of revertants capable of growth at pH 6.9. Two of the revertants elongated and failed to form colonies at pH 3.5. Genetic characterization of one of the pH-sensitive elongated strains, J227, showed the presence of two independently segregating mutations. One, pub1 ( protein ubiquitin ligase 1), has recently been reported as an E3 protein ubiquitin ligase involved in cdc25 turnover. The second has been named elp3-1 (elongated at low pH). Genetic dissection of the original strain revealed that poor growth at high pH was due to the presence of the auxotrophic markers, suggesting a possible inhibitory effect of high pH on the function of permeases responsible for uptake of the necessary nutrients. Suppression of the high pH sensitivity required the presence of both the pub1-1 and elp3-1 mutations. While the pub1-1 mutation reduced the capacity of cells to tolerate relatively moderate concentrations of LiCl (3 mM) in liquid culture, it was capable of partially suppressing the extreme Li+ sensitivity caused by the sod2 disruption. Under these conditions, the growth of pub1-1 sod2::ura4 double mutant cells was improved over that of either pub1-1 or sod2::ura4 cells. The elp3-1 mutation had no effect on the Li+ tolerance in either wild-type or sod2::ura4 backgrounds. pub1-1 cells are elongated and incapable of colony formation at pH 3.5. In contrast, elp3-1 cells are elongated at pH 3.5 and pH␣5.5 (the normal pH of minimal medium) but can form colonies under both conditions. J227 cells are significantly longer than either single mutant at pH 3.5 and do not form colonies but are visually similar to elp3-1 cells at pH 5.5. Complementation cloning in the J227 background yielded a genomic clone of pub1, allowing us to define the intron-exon structure of the gene. Sequences with high homology to the predicted amino acid sequence of pub1 have been identified in Saccharomyces cerevisiae (RSP5/NPI1), human (hRPF1), mouse (mNedd4), and rat (rNedd4). Based on the nature of our mutant selection, the pH-sensitive phenotype of the strains selected, and the known involvement of RSP5/NPI1 in membrane permease turnover in S. cerevisiae, we hypothesize a role for pub1, either directly or indirectly, in regulating membrane transport processes. This is further supported by the broad range of effects that the pub1-1 mutation exerts on overall performance of cells at high and low external pH, and in the presence of toxic levels of Li+. Received: 12 September 1996 / Accepted: 19 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号