首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins (HSPs) are essential for normal cellular stress responses. Absolute amounts of HSP72, HSP25, and αB-crystallin in rat extensor digitorum longus (EDL) and soleus (SOL) muscle were ascertained by quantitative Western blotting to better understand their respective capabilities and limitations. HSP72 content of EDL and SOL muscle was only ~1.1 and 4.6 μmol/kg wet wt, respectively, and HSP25 content approximately twofold greater (~3.4 and ~8.9 μmol/kg, respectively). αB-crystallin content of EDL muscle was ~4.9 μmol/kg but in SOL muscle was ~30-fold higher (~140 μmol/kg). To examine fiber heterogeneity, HSP content was also assessed in individual fiber segments; every EDL type II fiber had less of each HSP than any SOL type I fiber, whereas the two SOL type II fibers examined were indistinguishable from the EDL type II fibers. Sarcolemma removal (fiber skinning) demonstrated that 10-20% of HSP25 and αB-crystallin was sarcolemma-associated in SOL fibers. HSP diffusibility was assessed from the extent and rate of diffusion out of skinned fiber segments. In unstressed SOL fibers, 70-90% of each HSP was readily diffusible, whereas ~95% remained tightly bound in fibers from SOL muscles heated to 45°C. Membrane disruption with Triton X-100 allowed dispersion of HSP72 and sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps but did not alter binding of HSP25 or αB-crystallin. The amount of HSP72 in unstressed EDL muscle is much less than the number of its putative binding sites, whereas SOL type I fibers contain large amounts of αB-crystallin, suggesting its importance in normal cellular function without upregulation.  相似文献   

2.
The purpose of this study was to investigate alterations in structural and functional properties in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats after 1, 2, and 5 wk of tail suspension. Maximal O2 uptake was 19% lower after 5 wk suspension. Loss of muscle mass was greater in SOL (63%) than in EDL (22%) muscle. A reduction of type I distribution was accompanied by an increase of intermediate fiber subgroups (int I in SOL, int II in EDL). The cross-sectional area of all three fiber types was reduced by hypokinesia. The decrease in capillaries per fiber in SOL was greater than the decrease in citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities after 5 wk. No alteration in lactate dehydrogenase activity was noted. In EDL, no changes in fiber area, capillarization, and enzymatic activities occurred. Energy charge remained unchanged (0.91) whatever the muscle. These results suggest that type I fibers showed an earlier and greater susceptibility than type II fibers to suspension which is also accompanied by a decreased aerobic capacity.  相似文献   

3.
The sarcoplasmic reticulum (SR) and transverse tubular system (TTS) of a fast-twitch muscle (extensor digitorum longus-EDL) and a slow-twitch muscle (soleus-SOL) of the mouse were examined during postnatal development. Muscles of animals newborn to 60 days old were fixed in glutaraldehyde and osmium tetroxide and examined with an electron microscope. At birth the few T tubules were often oriented longitudinally, but at the age of 10 days most of them had a transverse orientation. In the EDL, the estimated volume of the TTS increased from 0.08% at birth to 0.4% in the adult; corresponding values for the SOL were 0.04% at birth and 0.22% in the adult. A similar relative change was observed in surface area of the TTS during development. Calculated on the basis of a 30 µm diameter fiber, the surface area of the TTS in the EDL increased from 0.60 cm2 TTS/cm2 fiber surface in the newborn to 3.1 cm2/cm2 in the adult, compared with 0.15 cm2/cm2 at birth to 1.80 cm2/cm2 in the adult for the SOL. The SR in the newborn muscles occurred as a loose network of tubules that developed rapidly within the subsequent 20 days, especially at the I band level. The volume of the SR increased in the EDL from 1.1% of fiber volume at birth to 5.5% in the adult. In the SOL the change was from 1.7% to 2.9%. The SOL approached the adult values more rapidly than the EDL, although the EDL had more SR and T tubules. Fibers of both EDL and SOL muscles showed variation in Z line thickness, mitochondrial content, and diameter, but over-all differences between the two muscles in amount of SR and TTS were significant. It is considered that the differing amounts of SR and TTS are closely related to the differing speeds of contraction that have been demonstrated for these two muscles.  相似文献   

4.
Muscle fibers in rabbit extensor digitorum longus (EDL), tibialis anterior (TA) and soleus, and rat soleus, were examined immunohistochemically for two proteins of the sarcoplasmic reticulum. Ca-ATPase and calsequestrin (CaS). Fibers were typed with the histochemical reaction for actomyosin ATPase. In the rabbit EDL and TA, type I fibers clearly reacted less for Ca-ATPase and CaS than type II fibers, but the difference was less with CaS than with Ca-ATPase. Although the differences were relatively small, IIB fibers consistently presented greater amounts of Ca-ATPase than IIA fibers. No type II subgroups could be recognized after incubation with anti-CaS. These findings confirm results from previous immunochemical measurements on whole muscles containing different proportions of IIA and IIB fibers (Leberer and Pette 1986). Type IIA and IIC in the rabbit and rat soleus reacted stronger for Ca-ATPase and for CaS than type I fibers. Small differences in Ca-ATPase, but not in CaS, were recognized within the type I fiber population. Therefore, type I fibers in the rabbit and rat soleus are not a homogeneous population.  相似文献   

5.
Summary Muscle fibers in rabbit extensor digitorum longus (EDL), tibialis anterior (TA) and soleus, and rat soleus, were examined immunohistochemically for two proteins of the sarcoplasmic reticulum, Ca-ATPase and calsequestrin (CaS). Fibers were typed with the histochemical reaction for actomyosin ATPase. In the rabbit EDL and TA, type I fibers clearly reacted less for Ca-ATPase and CaS than type II fibers, but the difference was less with CaS than with Ca-ATPase. Although the differences were relatively small, HB fibers consistently presented greater amounts of Ca-ATPase than IIA fibers. No types II subgroups could be recognized after incubation with anti-CaS. These findings confirm results from previous immunochemical measurements on whole muscles containing different proportions of IIA and IIB fibers (Leberer and Pette 1986). Type IIA and IIC in the rabbit and rat soleus reacted stronger for Ca-ATPase and for CaS than type I fibers. Small differences in Ca-ATPase, but not in CaS, were recognized within the type I fiber population. Therefore, type I fibers in the rabbit and rat soleus are not a homogeneous population.  相似文献   

6.
7.
Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca2+ concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mRNA expression of components involved in Ca2+ regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca2+-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca2+-regulating proteins in a manner that does not follow typical fibre-type-specific transitions. In general, stimulation decreased mRNA content of all proteins studied. Most prominent down-regulation was observed for Cacna1 (26 and 32 % after SHO and PRO, respectively, in SOL; 19 % after SHO in EDL). SERCA1, SERCA2, CASQ1, CASQ2, and RyR1 mRNA content also decreased significantly in both muscles relative to resting control. Of notice is that hexokinase II mRNA content was increased in EDL and unchanged in SOL underlining the specificity of the down-regulation of mRNA of Ca2+ regulatory proteins. The results demonstrate contraction-induced down-regulation of mRNAs for the main components of Ca2+-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses.  相似文献   

8.
Histochemical (M-ATPase) fiber typing was done on extensor digitorum longus, (EDL), soleus (SOL), and diaphragm (DIA) muscles of barrier-reared Fisher 344 rats obtained at four different ages (3, 9, 28, and 30 months) from the colonies of the National Institute of Aging. In the EDL there are no differences in the percent of type I fibers among the four age groups. The percent of type IIa and IIb fibers also showed no difference between the 3 and 30 month age groups. There was no apparent trend for an increase or decrease in the percent of type IIa or IIb fibers between the four age groups. In both the SOL and DIA muscles the percent of type I fibers was greater in the aged than in the young groups. The percent of type IIa fibers was lower in the 30 month group than in the younger groups for both muscles. The percent of type IIb (DIA) and IIc (SOL) fibers did not change between groups. Total fiber number per cross section of muscle showed no change in the EDL over this age range or in the SOL after 9 months of age. These findings bring into question published results that imply that decreasing fiber number and preferential loss of type II (a and b) fibers are typical aging phenomena.  相似文献   

9.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

10.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

11.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

12.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

13.
Skeletal muscle adaptation in rats flown on Cosmos 1667   总被引:1,自引:0,他引:1  
Seven male Wistar rats were subjected to 7 days of weightlessness on the Soviet biosatellite Cosmos 1667. Muscle histomorphometry and biochemical analyses were performed on the soleus (SOL) and extensor digitorum longus (EDL) of flight rats (group F) and compared with data from three groups of terrestrial controls: one subjected to conditions similar to group F in space except for the state of weightlessness (group S) and the others living free in a vivarium (V1, V2). Relative to group V2 (its age and weight-matched control group), group F showed a greater decrease of muscle mass in SOL (23%) than in EDL (11%). In SOL a decrease in the percentage of type I fibers was counterbalanced by a simultaneous increase in type IIa fibers. The cross-sectional area of type I fiber was reduced by 24%. No statistically significant difference in capillarization and enzymatic activities was observed between the groups. In EDL a reduction in type I fiber distribution and 3-hydroxyacyl-CoA-dehydrogenase activity (27%) occurred after the flight. The small histochemical and biochemical changes reported suggest the interest in studying muscular adaptation during a flight of longer duration.  相似文献   

14.
To reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles. To verify this assumption, we have compared the fiber type composition and the MyHC isoform content of unoperated contralateral SOL and EDL muscles and ipsilateral unoperated SOL muscle of experimental rats after unilateral isotransplantation into the host EDL muscle with corresponding muscles of the naive rats of the same age and strain. We provide compelling evidence that the unilateral heterochronous isotransplantation has no significant effect on the fiber type composition and the MyHC isoform content of unoperated muscles of experimental animals. Hence, these muscles can be used as controls in our grafting experiments.  相似文献   

15.
We studied the fiber types and contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles from young adult mice, rats and guinea pigs, and the correlation between these two parameters. Individual fibers in both muscles were classified as fast-twitch glycolytic (FG), fast-twitch oxidative glycolytic (FOG) or slow-twitch oxidative (SO) fibers according to Peter et al., and type II B, II A, or I fibers according to Brooke & Kaiser. Contractile properties were measured in situ at 37 degrees C. The isometric twitch contraction time (CT) and one-half relaxation time (1/2 RT) tended to be shortened in proportion to the area occupied by type II fibers, and type II B fibers. However, the differences between CT and fiber types were not always uniform among the three species. The CT of the rat EDL, in spite of its higher proportion of type II B fibers about 10% was the same as that of the guinea-pig EDL. The SOL of the mouse, composed of about 50% type I (SO) fibers, had a CT about as short as that of the EDL. In the case of the classification by Peter et al., the relationship between the percentage of subgroups of fast-twitch fibers and the CT or 1/2 RT, but not the resistance to fatigue, was not obvious. The resistance to fatigue tended to be enhanced in proportion to the area occupied by FOG in the EDL and by SO (type I) in the SOL. These results suggest that the contractile properties of individual fibers identified histochemically are distinct among animal species, producing interspecies differences in fiber types along with different contractile properties. However, it may be possible to compare the difference between fiber types and CT or 1/2 RT in the classification based on the pH lability of myosin ATPase, and also the difference between fiber types and resistance to fatigue in the classification based on the oxidative enzyme.  相似文献   

16.
Summary The effects of hypokinesia and of the lack of gravity on muscle fibres, fibre type composition and myosin light chain pattern, as well as on muscle mechanoreceptors were investigated in the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of young growing and adult rats after suspension hypokinesia (SH) of their hind limbs. The animals were suspended by their tail so that their hind limbs were relieved of their normal weight-bearing function for 3–6 weeks.In normal 3-to 4-week-old rats the SOL contained about 50% type I fibres and their percentage increased up to about 80% until the 10th week, with simultaneous reduction of type IIA fibres. After 3 to 6 weeks of suspension treatment maintained from 3-to, 4-week-old rats up to 6 to 10 weeks of age, the SOL still only contained about 50% of type I fibres. The content of fast LC1 and LC2 in the SOL of 6-week-old rats after 3 weeks of suspension was higher than that of control litter-mates reflecting the higher occurrence of IIA fibres in the suspended solei. No changes in fibre type composition were observed after SH performed in adult rats.SH thus leads, in young animals, to the arrest of conversion of type IIA to type I fibres resulting in the persistence of the fibre type composition and of the myosin light chain pattern corresponding to those present in the SOL at the time of the onset of suspension. In both young and adult rats, SH markedly decreased the mass and the mean cross-sectional area of the SOL, mainly due to the severe atrophy of type I fibres. We observed no signs indicating conversion of type I back to type IIA muscle fibres due to the SH either in young or adult animals.In contrast to profound changes in the SOL, no significant differences were found in the EDL in any of the parameters studied.No changes in the investigated parameters of muscle spindles and tendon organs were observed after SH, performed either in young or in adult rats.We thus conclude that SH leads to muscle atrophy and that it influences mainly or exclusively type I fibres in muscles with a postural function such as the SOL. It is suggested that in young rats SH arrests changes in the SOL motoneurones, which remain unable to ensure the normal developmental transformation of type IIA into type I fibres, thus preventing conversion of the SOL into a typical slow-twitch muscle.  相似文献   

17.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

18.
Liver uptake of thyroxine (T4) is mediated by transporters and is rate limiting for hepatic 3,3',5-triiodothyronine (T3) production. We investigated whether hepatic mRNA for T4 transporters is regulated by thyroid state using Xenopus laevis oocytes as an expression system. Because X. laevis oocytes show high endogenous uptake of T4, T4 sulfamate (T4NS) was used as an alternative ligand for the hepatic T4 transporters. Oocytes were injected with 23 ng liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats, and after 3-4 days uptake was determined by incubation of injected and uninjected oocytes for 1 h at 25 degrees C or for 4 h at 18 degrees C with 10 nM [125I]T4NS. Expression of type I deiodinase (D1), which is regulated by thyroid state, was studied in the oocytes as an internal control. Uptake of T4NS showed similar approximately fourfold increases after injection of liver mRNA from euthyroid, hypothyroid, or hyperthyroid rats. A similar lack of effect of thyroid state was observed using reverse T3 as ligand. In contrast, D1 activity induced by liver mRNA from hyperthyroid and hypothyroid rats in the oocytes was 2.4-fold higher and 2.7-fold lower, respectively, compared with euthyroid rats. Studies have shown that uptake of iodothyronines in rat liver is mediated in part by several organic anion transporters, such as the Na+/taurocholate-cotransporting polypeptide (rNTCP) and the Na-independent organic anion-transporting polypeptide (rOATP1). Therefore, the effects of thyroid state on rNTCP, rOATP1, and D1 mRNA levels in rat liver were also determined. Northern analysis showed no differences in rNTCP or rOATP1 mRNA levels between hyperthyroid and hypothyroid rats, whereas D1 mRNA levels varied widely as expected. These results suggest little effect of thyroid state on the levels of mRNA coding for T4 transporters in rat liver, including rNTCP and rOATP1. However, they do not exclude regulation of hepatic T4 transporters by thyroid hormone at the translational and posttranslational level.  相似文献   

19.
The effects of beta-adrenergic stimulation on the relaxation rate and the Ca2+-transport rate in sarcoplasmic reticulum of hypothyroid, euthyroid and hyperthyroid rat hearts were studied. Administration of isoproterenol (0.1 microM) to perfused, electrically stimulated hearts (5 Hz) caused a decrease in the half-time of relaxation (RT 1/2) the extent of which depended on the thyroid status, i.e. hypothyroid (-24%), euthyroid (-19%) or hyperthyroid (-8%). A similar decreasing effect was found for the stimulation of Ca2+ transport in isolated SR by cyclic AMP and protein kinase, i.e. hypothyroid (75%), euthyroid (37%) and hyperthyroid (20%). These alterations were not due to differences in endogenous protein kinase activity or cyclic AMP production. Estimations of Ca2+-ATPase and phospholamban (PL) content of the sarcoplasmic reticulum were obtained by measurement of the phosphorylated forms of Ca2+-ATPase (E-P) and phospholamban (PL-P) followed by electrophoresis and autoradiography. A 3-fold decrease of PL-P, accompanied by a 2-fold increase of E-P per mg of protein was observed in sarcoplasmic reticulum preparations in the direction hypothyroid----hyperthyroid. Consequently the E-P/PL-P ratio increased from 0.32 (hypothyroid), through 0.81 (euthyroid) to 1.69 (hyperthyroid). In spite of certain limitations inherent to quantification of Ca2+-ATPase and phospholamban by their phosphorylated products, these data provide strong evidence that during thyroid-hormone mediated cardiac hypertrophy, with concomitant proliferation of the sarcoplasmic reticulum, the relative amount of phospholamban decreases with respect to Ca2+-ATPase. This could provide an explanation for the observed gradual diminishment of the beta-adrenergic effect on the relaxation rate when cardiac tissue is exposed to increasing amounts of thyroid hormone.  相似文献   

20.
Heart failure (HF) is characterized by limited exercise tolerance, skeletal muscle atrophy, a shift toward fast muscle fiber, and myogenic regulatory factor (MRF) changes. Reactive oxygen species (ROS) also contribute to target organ damage in this syndrome. In this study, we investigated and compared morphofunctional characteristics and gene expression in Soleus (SOL--oxidative and slow twitching muscle) and in Extensor Digitorum Longus (EDL--glycolytic and fast twitching muscle) during HF. Two groups of rats were used: control (CT) and heart failure (HF), induced by a single injection of monocrotaline. MyoD and myogenin gene expression were determined by RT-qPCR, and MHC isoforms by SDS-PAGE; muscle fiber type frequency and cross sectional area (CSA) were analyzed by mATPase. A biochemical study was performed to determine lipid hydroperoxide (LH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD); myography was used to determine amplitude, rise time, fall time, and fatigue resistance in both muscles. HF showed SOL and EDL muscle atrophy in all muscle fiber types; fiber frequency decreased in type IIC and muscle contraction fall time increased only in SOL muscle. Myogenin mRNA expression was lower in SOL and myoD decreased in HF EDL muscle. LH increased, and SOD and GSH-Px activity decreased only in HF SOL muscle. HF EDL muscle did not present changes in MHC distribution, contractile properties, HL concentration, and antioxidant enzyme activity. In conclusion, our results indicate that monocrotaline induced HF promoted more prominent biochemical, morphological and functional changes in SOL (oxidative and slow twitching muscle). Although further experiments are required to better determine the mechanisms involved in HF pathophysiology, our results contribute to understanding the muscle-specific changes that occur in this syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号