首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tiliroside contained in several dietary plants, such as rose hips, strawberry and raspberry, is a glycosidic flavonoid and possesses anti-inflammatory, antioxidant, anticarcinogenic and hepatoprotective activities. Recently, it has been reported that the administration of tiliroside significantly inhibited body weight gain and visceral fat accumulation in normal mice. In this study, we evaluated the effects of tiliroside on obesity-induced metabolic disorders in obese-diabetic KK-A(y) mice. In KK-A(y) mice, the administration of tiliroside (100 mg/kg body weight/day) for 21 days failed to suppress body weight gain and visceral fat accumulation. Although tiliroside did not affect oxygen consumption, respiratory exchange ratio was significantly decreased in mice treated with tiliroside. In the analysis of metabolic characteristics, it was shown that plasma insulin, free fatty acid and triglyceride levels were decreased, and plasma adiponectin levels were increased in mice administered tiliroside. The messenger RNA expression levels of hepatic adiponectin receptor (AdipoR)-1 and AdipoR2 and skeletal muscular AdipoR1 were up-regulated by tiliroside treatment. Furthermore, it was indicated that tiliroside treatment activated AMP-activated protein kinase in both the liver and skeletal muscle and peroxisome proliferator-activated receptor α in the liver. Finally, tiliroside inhibited obesity-induced hepatic and muscular triglyceride accumulation. These findings suggest that tiliroside enhances fatty acid oxidation via the enhancement adiponectin signaling associated with the activation of both AMP-activated protein kinase and peroxisome proliferator-activated receptor α and ameliorates obesity-induced metabolic disorders, such as hyperinsulinemia and hyperlipidemia, although it does not suppress body weight gain and visceral fat accumulation in obese-diabetic model mice.  相似文献   

2.
Ge X  Yin L  Ma H  Li T  Chiang JY  Zhang Y 《Journal of lipid research》2011,52(8):1561-1568
Aldo-keto reductase 1B7 (AKR1B7) is proposed to play a role in detoxification of by-products of lipid peroxidation. In this article, we show that activation of the nuclear receptor farnesoid X receptor (FXR) induces AKR1B7 expression in the liver and intestine, and reduces the levels of malondialdehyde (MDA), the end product of lipid peroxidation, in the intestine but not in the liver. To determine whether AKR1B7 regulates MDA levels in vivo, we overexpressed AKR1B7 in the liver. Overexpression of AKR1B7 in the liver had no effect on hepatic or plasma MDA levels. Interestingly, hepatic expression of AKR1B7 significantly lowered plasma glucose levels in both wild-type and diabetic db/db mice, which was associated with reduced hepatic gluconeogenesis. Hepatic expression of AKR1B7 also significantly lowered hepatic triglyceride and cholesterol levels in db/db mice. These data reveal a novel function for AKR1B7 in lipid and glucose metabolism and suggest that AKR1B7 may not play a role in detoxification of lipid peroxides in the liver. AKR1B7 may be a therapeutic target for treatment of fatty liver disease associated with diabetes mellitus.  相似文献   

3.
Two 3-phenyldihydroisocoumarins (hydrangenol and phyllodulcin), a 3-phenylisocoumarin (thunberginol A), and a stilbene (hydrangeaic acid) from the processed leaves of Hydrangea macrophylla var. thunbergii (Hydrangeae Dulcis Folium) promoted adipogenesis of 3T3-L1 cells. Hydrangenol, a principal constituent, significantly increased the amount of adiponectin released into the medium and mRNA levels of adiponectin, peroxisome proliferator-activated receptor gamma2 (PPARgamma2), and glucose transporter 4 (GLUT4), while it decreased the expression of interleukin 6 (IL-6) mRNA. Furthermore, hydrangenol significantly lowered blood glucose and free fatty acid levels 2 weeks after its administration at a dose of 200 mg/kg/d in KK-A(y) mice.  相似文献   

4.
To investigate changes in bile acid biosynthesis in chicken (Gallus gallus) during embryonic stages, we studied the contribution of hepatic and plasma total bile acid levels, mRNA expression of cholesterol 7 alpha-hydroxylase (CYP7A1), and the expression of its regulatory genes in two embryo models (i.e., broilers and layers) differing in lipid metabolism. Total bile acid levels in plasma and liver were low during embryonic stages, as well as expression of CYP7A1. At hatch (P0), hepatic and plasma total bile acid levels and CYP7A1 mRNA expression in liver were markedly increased in both models. The hepatic mRNA expression of liver X receptor (LXR)alpha, a regulator of CYP7A1 gene expression gradually decreased with developmental stages of both broilers and layers. The hepatic mRNA expression of farnesoid X receptor (FXR), a repressor of CYP7A1 gene expression, also decreased with embryonic development. The present results showed that the mRNA expression of CYP7A1 and synthesis of bile acids was low in embryonic stages, suggesting that FXR might be a key regulator of CYP7A1 gene expression in the chicken embryo.  相似文献   

5.
Long-chain acyl-CoA synthetase 1 (ACSL1) plays a pivotal role in fatty acid β‑oxidation in heart, adipose tissue and skeletal muscle. However, key functions of ACSL1 in the liver remain largely unknown. We investigated acute effects of hepatic ACSL1 deficiency on lipid metabolism in adult mice under hyperlipidemic and normolipidemic conditions. We knocked down hepatic ACSL1 expression using adenovirus expressing a ACSL1 shRNA (Ad-shAcsl1) in mice fed a high-fat diet or a normal chow diet. Hepatic ACSL1 depletion generated a hypercholesterolemic phenotype in mice fed both diets with marked elevations of total cholesterol, LDL-cholesterol and free cholesterol in circulation and accumulations of cholesterol in the liver. Furthermore, SREBP2 pathway in ACSL1 depleted livers was severely repressed with a 50% reduction of LDL receptor protein levels. In contrast to the dysregulated cholesterol metabolism, serum triglycerides, free fatty acid and phospholipid levels were unaffected. Mechanistic investigations of genome-wide gene expression profiling and pathway analysis revealed that ACSL1 depletion repressed expressions of several key enzymes for bile acid biosynthesis, consequently leading to reduced liver bile acid levels and altered bile acid compositions. These results are the first demonstration of a requisite role of ACSL1 in bile acid biosynthetic pathway in liver tissue. Furthermore, we discovered that Acsl1 is a novel molecular target of the bile acid-activated farnesoid X receptor (FXR). Activation of FXR by agonist obeticholic acid repressed the expression of ACSL1 protein and mRNA in the liver of FXR wild-type mice but not in FXR knockout mice.  相似文献   

6.
The farnesoid X receptor (FXR) is a nuclear receptor that regulates gene expression in response to bile acids (BAs). FXR plays an important role in the homeostasis of bile acid, cholesterol, lipoprotein and triglyceride. In this report, we identified fatty acid synthase (FAS) and hepatic lipase (HL) genes as novel target genes of FXR. Human hepatoma HepG2 cells were treated with chenodeoxycholic acid, the natural FXR ligand, and the messenger RNA and protein levels of FAS and HL were determined by RT-PCR and Western blot analysis, respectively. Chenodeoxycholic acid (CDCA) down-regulated the expression of FAS and HL genes in a dose and time-dependent manner in human hepatoma HepG2 cells. In addition, treatment of mice with CDCA significantly decreased the expression of FAS and HL in mouse liver and the activity of HL. These results demonstrated that FAS and HL might be FXR-regulated genes in liver cells. In view of the role of FAS and HL in lipogenesis and plasma lipoprotein metabolism, our results further support the central role of FXR in the homeostasis of fatty acid and lipid.  相似文献   

7.
Fucoxanthin (Fx) isolated from Undaria pinnatifida suppresses the development of hyperglycemia and hyperinsulinemia of diabetic/obese KK-A(y) mice after 2 weeks of feeding 0.2% Fx-containing diet. In the soleus muscle of KK-A(y) mice that were fed Fx, glucose transporter 4 (GLUT4) translocation to plasma membranes from cytosol was promoted. On the other hand, Fx increased GLUT4 expression levels in the extensor digitorum longus (EDL) muscle, although GLUT4 translocation tended to increase. The expression levels of insulin receptor (IR) mRNA and phosphorylation of Akt, which are in upstream of the insulin signaling pathway regulating GLUT4 translocation, were also enhanced in the soleus and EDL muscles of the mice fed Fx. Furthermore, Fx induced peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α), which has been reported to increase GLUT4 expression, in both soleus and EDL muscles. These results suggest that in diabetic/obese KK-A(y) mice, Fx improves hyperglycemia by activating the insulin signaling pathway, including GLUT4 translocation, and inducing GLUT4 expression in the soleus and EDL muscles, respectively, of diabetic/obese KK-A(y) mice.  相似文献   

8.
Obesity and its associated non-alcoholic fatty liver disease (NAFLD) have become epidemic medical problems worldwide; however, the current available therapeutic options are limited. Farnesoid X receptor (FXR) has recently emerged as an attractive target for obesity treatment. Here we demonstrate that isotschimgine (ITG), a constituent in genus Ferula, as a novel FXR agonist with anti-obesity and anti-hepatic steatosis effects. The results showed that ITG activated the FXR transactivity and bound with the ligand binding dormain (LBD) of FXR with gene reporter assays and AlphaScreen assays. In high-fat diet-induced obese (DIO) mice, ITG lowered body weight and fat mass, improved insulin resistance and hepatic steatosis. Mechanistic studies showed that ITG altered the expression levels of FXR downstream genes, lipid synthesis and energy metabolism genes in the liver of mice. Our findings suggest that ITG is a novel FXR agonist and may be a potential therapeutic choice for obesity associated with NAFLD.  相似文献   

9.
Acetic acid (AcOH), which is a short-chain fatty acid, is reported to have some beneficial effects on metabolism. To test the hypothesis that feeding of AcOH exerts beneficial effects on glucose homeostasis in type 2 diabetes, we fed either a standard diet or one containing 0.3% AcOH to KK-A(y) mice for 8 weeks. Fasting plasma glucose and HbA1c levels were lower in mice fed AcOH for 8 weeks than in control mice. AcOH also reduced the expression of genes involved in gluconeogenesis and lipogenesis, which is in part regulated by 5'-AMP-activated protein kinase (AMPK) in the liver. Finally, sodium acetate, in the form of neutralized AcOH, directly activated AMPK and lowered the expression of genes such as for glucose-6-phosphatase and sterol regulatory element binding protein-1 in rat hepatocytes. These results indicate that the hypoglycemic effect of AcOH might be due to activation of AMPK in the liver.  相似文献   

10.
Blocking intestinal bile acid absorption by inhibiting the apical sodium codependent bile acid transporter (ASBT) is a target for increasing hepatic bile acid synthesis and reducing plasma LDL cholesterol. SC-435 was identified as a potent inhibitor of ASBT (IC50 = 1.5 nM) in cells transfected with the human ASBT gene. Dietary administration of 3 mg/kg to 30 mg/kg SC-435 to apolipoprotein E-/- (apoE-/-) mice increased fecal bile acid excretion by >2.5-fold. In vivo inhibition of ASBT also resulted in significant increases of hepatic mRNA levels for cholesterol 7alpha-hydroxylase and HMG-CoA reductase. Administration of 10 mg/kg SC-435 for 12 weeks to apoE-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 65%. Treatment of apoE-/- mice also resulted in decreased expression of ileal bile acid binding protein and hepatic nuclear hormone receptor small heterodimer partner, direct target genes of the farnesoid X receptor (FXR), suggesting a possible role of FXR in SC-435 modulation of cholesterol homeostasis. In dogs, SC-435 treatment reduced serum total cholesterol levels by 相似文献   

11.
12.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

13.
The farnesoid X-receptor is an essential regulator of cholesterol homeostasis   总被引:13,自引:0,他引:13  
To address the importance of the farnesoid X-receptor (FXR; NR1H4) for normal cholesterol homeostasis, we evaluated the major pathways of cholesterol metabolism in the FXR-deficient (-/-) mouse model. Compared with wild-type, FXR(-/-) mice have increased plasma high density lipoprotein (HDL) cholesterol and a markedly reduced rate of plasma HDL cholesterol ester clearance. Concomitantly, FXR(-/-) mice exhibit reduced expression of hepatic genes involved in reverse cholesterol transport, most notably, that for scavenger receptor BI. FXR(-/-) mice also have increased: (i) plasma non-HDL cholesterol and triglyceride levels, (ii) apolipoprotein B-containing lipoprotein synthesis, and (iii) intestinal cholesterol absorption. Surprisingly, biliary cholesterol elimination was increased in FXR(-/-) mice, despite decreased expression of hepatic genes thought to be involved in this process. These data demonstrate that FXR is a critical regulator of normal cholesterol metabolism and that genetic changes affecting FXR function have the potential to be pro-atherogenic.  相似文献   

14.
Sinal CJ  Tohkin M  Miyata M  Ward JM  Lambert G  Gonzalez FJ 《Cell》2000,102(6):731-744
Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.  相似文献   

15.
The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression.  相似文献   

16.
Flavonoids have been identified as the antidiabetic components in a number of traditional ethnic remedies. However, the mechanisms whereby these compounds exert their hypoglycemic and hypolipidemic action in type-2 diabetes have rarely been investigated. Therefore, this study investigated the effect of the flavonoids hesperidin and naringin on glucose and lipid regulation in C57BL/KsJ-db/db mice. Hesperidin and naringin both significantly increased the glucokinase mRNA level, while naringin also lowered the mRNA expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver. In addition, the hepatic glucose transporter 2 protein expression was significantly reduced, while the expression of adipocyte glucose transporter 4 and hepatic and adipocyte peroxisome proliferator-activated receptor gamma were elevated in the hesperidin and naringin groups when compared with the control group. Furthermore, hesperidin and naringin effectively lowered the plasma free fatty acid and plasma and hepatic triglyceride levels, and simultaneously reduced the hepatic fatty acid oxidation and carnitine palmitoyl transferase activity. These changes were seemingly attributable to a suppression of the hepatic fatty acid synthase, glucose-6-phosphate dehydrogenase, and phosphatidate phosphohydrolase activities and an increase in the fecal triglycerides. The two flavonoids also led to a decrease in the plasma and hepatic cholesterol levels that may have been partly due to the decreased hepatic 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) reductase and acyl CoA: cholesterol acyltransferase (ACAT) activities and increased fecal cholesterol. Consequently, the current results suggest that hesperidin and naringin are beneficial for improving hyperlipidemia and hyperglycemia in type-2 diabetic animals by partly regulating the fatty acid and cholesterol metabolism and affecting the gene expression of glucose-regulating enzymes.  相似文献   

17.
We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively. Hepatic bile salt export pump mRNA levels and ileal bile acid-binding protein decreased while sterol 12alpha-hydroxylase and sodium/taurocholate cotransporting polypeptide mRNA levels increased in the liver. In addition, hepatic FXR mRNA levels decreased significantly.The data, taken together, indicate that FXR was deactivated when the bile acid pool was depleted such that CYP7A1 was upregulated. Further, lack of the high affinity ligand supply was associated with downregulation of hepatic FXR mRNA levels.  相似文献   

18.
Peroxisome proliferator-activated receptors (PPARs) control energy homeostasis. In this study, we showed that farnesol, a naturally occurring ligand of PPARs, could ameliorate metabolic diseases. Obese KK-Ay mice fed a high-fat diet (HFD) containing 0.5% farnesol showed significantly decreased serum glucose level, glucosuria incidence, and hepatic triglyceride contents. Farnesol-containing HFD upregulated the mRNA expressions of PPARα target genes involved in fatty acid oxidation in the liver. On the other hand, farnesol was not effective in upregulating the mRNA expressions of PPARγ target genes in white adipose tissues. Experiments using PPARα-deficient [(-/-)] mice revealed that the upregulation of fatty acid oxidation-related genes required PPARα function, but the suppression of hepatic triglyceride accumulation was partially PPARα-dependent. In hepatocytes isolated from the wild-type and PPARα (-/-) mice, farnesol suppressed triglyceride synthesis. In luciferase assay, farnesol activated both PPARα and the farnesoid X receptor (FXR) at similar concentrations. Moreover, farnesol increased the mRNA expression level of a small heterodimer partner known as one of the FXR target genes and decreased those of sterol regulatory element-binding protein-1c and fatty acid synthase in both the wild-type and PPARα (-/-) hepatocytes. These findings suggest that farnesol could improve metabolic abnormalities in mice via both PPARα-dependent and -independent pathways and that the activation of FXR by farnesol might contribute partially to the PPARα-independent hepatic triglyceride content-lowering effect. To our knowledge, this is the first study on the effect of the dual activators of PPARα and FXR on obesity-induced metabolic disorders.  相似文献   

19.
Many studies have reported the cholesterol-lowering, anti-lipogenic, anti-obesity and anti-hypertensive effects of soy protein. Adipose tissue-specific plasma protein, adiponectin, has anti-atherogenic and anti-insulin-resistance properties. Here, we investigated the effects of soy protein diet on body fat composition, plasma glucose, lipid and adiponectin levels and expression of genes involved in glucose and fatty acid metabolism in obese KK-A y mice. Body weights and adipose tissue weights of mesenteric, epididymal, and brown fat were lower in mice on calorie-restricted diet containing soy protein isolate. Plasma cholesterol, triglyceride, free fatty acid, and glucose levels were also decreased by this diet. Body fat content and plasma glucose levels in mice on a soy protein isolate diet were still lower than those treated with an isocaloric casein-protein-diet. Among the genes related to glucose and fatty acid metabolism, adiponectin mRNA levels in adipose tissue and adiponectin plasma concentrations were elevated in mice on a calorie-restricted diet, although there were no significant differences between soy protein and casein protein groups. Our results indicate that that soy protein diet decreased body fat content and plasma glucose levels more effectively than isocaloric casein-protein diet in obese mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号