首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary Mitochondrial and chloroplast DNA were characterized in three different combinations of somatic hybrids produced between different species within Brassicaceae. The fusions were made between B. campestris and B. oleracea, B. napus and B. nigra and between B. napus and Eruca sativa. The combinations represent interspecific hybridizations, but the phylogenetic distance between the species used in each instance is different. Whereas the B. campestris (+) B. oleracea and the B. napus (+)B. nigra hybrids are both examples of intrageneric hybrids, B. campestris is more closely related to B. oleracea than B. napus is to B. nigra. The fusion of B. napus and E. sativa represents an intergeneric hybridization. Since hybrids were produced with reproducible and uniform fusion and culture methods, a comparison of chloroplast and mitochondrial segregation and mitochondrial DNA (mt-DNA) rearrangements could be made between the combinations. The segregation of both chloroplasts and mitochondria was biased in the B. napus (+)B. nigra and the B. napus (+)E. sativa combination. The nonrandom segregation of chloroplasts and mitochondria could be due to the different ploidy levels of the fusion partners and/or reflect differences in organelle replication rate. Furthermore, segregation of mitochondria was correlated to the differences in phylogenetic distance between the species used in the fusions. However, mitochondrial segregation, in contrast to chloroplast segregation, could in all combinations also have been affected by the cell type used as protoplast source in the fusions. All different chloroplast types could be established within each combination. Hybrids containing chloroplast from one parent together with mitochondria from the other parent were found in two of the combinations, although the majority of the hybrids had mt-DNA that was altered compared to the parental species. The rearranged mt-DNA found in most hybrids was an effect of the heteroplasmic state following protoplast fusion rather than of the tissue culture methods, since no mt-DNA rearrangements were found in B. napus plants regenerated from protoplast culture. The mtDNA restriction patterns of the hybrids with rearranged mt-DNA indicated that specific regions of the mt-DNA were involved in the rearrangements following protoplast fusion.  相似文献   

2.
Summary An atrazine-resistant, male-fertile Brassica napus plant was synthesized by fusion of protoplasts from the diploid species B. oleracea and B. campestris. Leaf protoplasts from B. oleracea var. italica carrying the Ogura male-sterile cytoplasm derived from Raphanus sativus were fused with etiolated hypocotyl protoplasts of atrazine-resistant B. campestris. The selection procedure was based on the inability of B. campestris protoplasts to regenerate in the media used, and the reduction of light-induced growth of B. oleracea tissue by atrazine. A somatic hybrid plant that differed in morphology from both B. oleracea and B. campestris was regenerated on medium containing 50 M atrazine. Its chromosome number was 36–38, approximately that of B. napus. Furthermore, nuclear ribosomal DNA from this hybrid was a mixture of both parental rDNAs. Southern blot analyses of chloroplast DNA and an assay involving tetrazolium blue indicated that the hybrid contained atrazine-resistant B. campestris chloroplasts. The hybrid's mitochondrial genome was recombinant, containing fragments unique to each parent, as well as novel fragments carrying putative crossover points. Although the plant was female-sterile, it was successfully used to pollinate B. napus.  相似文献   

3.
Summary Chromosome and organelle segregation after the somatic hybridization of related species with different degrees of genetic divergence were studied by comparing the interspecific somatic hybrids Brassica oleracea (CC) (+) B. campestris (AA), B. napus (AACC) (+) B. oleracea (CC) B. napus (AACC) (+) B. nigra (BB) and B. napus (AACC) (+) B. juncea (AABB) with the intergeneric somatic hybrids B. napus (AACC) (+) Raphanus sativus (RR) and B. napus (AACC) (+) Eruca sativa (EE). Within each combination, some hybrids were found whose DNA content was equal to the sum of parental chromosomes, others had a relatively higher DNA content and in most of the cases, some had a relatively lower content. However, the frequency distribution in these three classes differed significantly between the combinations. A positive correlation between the frequency of hybrids with eliminated chromosomes and the genetic distance between the species in each combination was found. Furthermore, by combining species with different ploidy levels we found a significantly higher degree of chromosome elimination compared to combinations of species with the same ploidy level. In the B. napus (+) B. Nigra, B. napus (+) R. sativus and B. napus (+) E. sativa combinations chromosomes from the B, R and E genomes appeared to be preferentially sorted out, as indicated by the fact that some of the nuclear markers from these genomes were missing in 7–46% of the plants, whereas no plants were lacking B. napus nuclear markers. Fertile hybrids were found in all but the B. napus (+) R. sativus fusion combination; the latter hybrids were male sterile, but female fertile. Hybrids between the A and C genomes were more fertile than hybrids obtained between the distantly related AC and B, R or E genomes, respectively. Analysis of the chloroplast RFLP pattern revealed that chloroplasts in the B. oleracea (+) B. campestris hybrids segregated randomly. A slightly biased segregation, favouring B. napus chloroplasts, was found in the B. napus (+) B. oleracea combination, whereas B. napus chloroplasts were strongly selected for in the B. napus (+) B. juncea, B. napus (+) B. nigra, B. napus (+) R. sativus and B. napus (+) E. sativa somatic hybrids.  相似文献   

4.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

5.
Summary Somatic hybridization between Brassica napus and B. hirta (or Sinapis alba) is described. No cybrid plant with B. napus nucleus exhibiting cytoplasmic male sterility was recovered. Somatic hybrids were identified morphologically and, for some of them, by cytological observations. They were also characterised by Southern hybridization of nuclear rDNA. Chloroplast and mitochondrial DNA restriction analysis showed that 2 plants out of 14 have B. hirta ctDNA, one the B. napus mtDNA and the other a hybrid. Nine possess B. napus ctDNA with a hybrid mtDNA. For six of them, mtDNA patterns present novel bands, suggesting intergenomic recombination during fusion. These hybrids will be included in the breeding program.  相似文献   

6.
Summary Five somatic hybrids between Brassica campestris and B. oleracea were obtained. Molecular, morphological and cytological information all suggest that the resynthesized B. napus plants were hybrids. All five plants were diploid (2n=38) and had mainly bivalents at meiosis. Seedset was low after selfing but normal after crossing with B. napus. Molecular proof of the hybrid nature of these plants was obtained by hybridization of a rDNA repeat to total DNA. Analysis of chloroplast DNA restriction patterns revealed that all hybrids had chloroplasts identical to the B. oleracea parent. The analysis of mitochondrial DNA indicated that three hybrids had restriction patterns identical to those of B. campestris, and the other two had restriction patterns similar to those of B. oleracea. The 11.3 kb plasmid present in mitochondria of the B. campestris parent was also found in mitochondria of all five hybrids. This suggests that the plasmid from a B. campestris type of mitochondria was transferred into mitochondria of a B. oleracea type.  相似文献   

7.
Detailed molecular analysis of the somatic hybrid plants of Diplotaxis catholica+B. juncea indicated random chloroplast segregation. One of the five hybrid plants analyzed derived its chloroplasts from D. catholica and two hybrids had chloroplasts of B. juncea origin. Two hybrid plants maintained mixed population of chloroplasts. The mitochondrial (mt) genomes of the fusion partners had undergone recombinations. Occurrence of fragments specific to both the parents in HindIII digestion followed by atp 9 probing, as in hybrid DJ5, provided evidence for intergenomic mitochondrial recombination between D. catholica and B. juncea. Similar mt genome organization in two hybrids (DJ3 and DJ6) suggested that intergenomic recombination may be preferred at specific sites. Hybrid DJ1 had about 70% similarity to D. catholica in mt genome organization. mt genomes of hybrids DJ2, 3, 5, and 6 differed from B. juncea by 14.3–28%. The significance of these novel mt genome organizations in developing novel male sterility systems is discussed. Received: 4 April 1997 / Revision received: 19 December 1997 / Accepted: 28 March 1998  相似文献   

8.
Summary Enzyme electrophoresis was used to compare newly resynthesized Brassica napus with its actual parental diploid species, B. campestris and B. alboglabra. Comparisons were also made with cultivated B. napus. Of the eight enzyme systems assayed, four were monomorphic (hexokinase, malate dehydrogenase, mannose phosphate isomerase and peroxidase), whereas the remaining four were polymorphic (glucosephosphate isomerase, leucine aminopeptidase, phosphoglucomutase and shikimate dehydrogenase), when comparisons were made within or between species. The polymorphic enzyme patterns observed in the newly resynthesized B. napus disclosed that the homoeologous loci contributed by the parental species were expressed in the amphiploid. Analysis of the glucosephosphate isomerase enzyme in a breeding line (Sv 02372) of B. napus indicated that, in this case, the gene originating from B. campestris was switched off whereas that of B. oleracea was expressed. Duplicated enzyme loci were observed in B. campestris and B. alboglabra, thus providing additional evidence to support the hypothesis that these species are actually secondary polyploids derived from an unknown archetype of x=6.  相似文献   

9.
Interspecific hybrids from the crossing Brassica campestris x B. hirta are reported in our study for the first time. F1 plants were obtained by using ovary culture. The phenotype of hybrids was similar to B. napus; the plants were self-fertile. Investigation of meiotic division and nuclear DNA content measurements showed the amphidiploid origin of these hybrids. The relationship between genome A and D, as well as the spontaneous amphidiploidization of the hybrids, are discussed.  相似文献   

10.
Brassica species are particularly receptive to gene transformation techniques. There now exists canola genotypes with transgenic herbicide resistance for glyphosate, imidazolinone, sulfonylurea and glufosinate herbicides. The main concern of introducing such herbicide resistance into commercial agriculture is the introgression of the engineered gene to related weed species. The potential of gene transfer between canola (Brassica napus and B. campestris) and related weed species was determined by hand pollination under controlled greenhouse conditions. Canola was used as both male and female parent in crosses to the related weed species collected in the Inland Northwest region of the United States. Weed species used included: field mustard (B. rapa), wild mustard (S. arvensis) and black mustard (B. nigra). Biological and cytological aspects necessary for successful hybrid seed production were investigated including: pollen germination on the stigma; pollen tube growth down the style; attraction of pollen tubes to the ovule; ovule fertilisation; embryo and endosperm developmental stages. Pollen germination was observed in all 25 hybrid combinations. Pollen tubes were found in the ovary of over 80% of combinations. About 30% of the hybrid combinations developed to the heart stage of embryo development or further. In an additional study involving transgenic glufosinate herbicide resistant B. napus and field mustard it was found that hybrids occurred with relatively high frequency, hybrids exhibited glufosinate herbicide resistance and a small proportion of hybrids produced self fertile seeds. These fertile plants were found to backcross to either canola or weed parent.  相似文献   

11.
Summary This study aimed at generating chromosome addition lines and disclosing genome specific markers in Brassica. These stocks will be used to study genome evolution in Brassica oleracea L., B. campestris L. and the derived amphidiploid species B. napus L. B. campestris-oleracea monosomic and disomic chromosome addition plants were generated by crossing and backcrossing the natural amphidiploid B. napus to the diploid parental species B. campestris. The pollen viability of the derived sesquidiploid and hyperploid ranged from 63% to 88%, while the monosomic and disomic addition plants had an average pollen fertility of 94% and 91%, respectively. The addition lines were genetically characterized by genome specific markers. The isozymes for 6PGD, LAP, PGI and PGM, and rDNA Eco RI restriction fragments were found to possess the desired genome specificity. Duplicated loci for several of these markers were observed in B. campestris and B. oleracea, supporting the hypothesis that these diploid species are actually secondary polyploids. A total of eight monosomic and eight disomic addition plants were identified and characterized on the basis of these markers. Another 51 plants remained uncharacterized due to the lack of additional markers. rDNA genes were found to be distributed in more than one chromosome, differing in its restriction sites. Intergenomic recombination for some of the markers was detected at frequencies between 6% and 20%, revealing the feasibility of intergenomic gene transfer.  相似文献   

12.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

13.
Thirty Brassica napus lines have been developed through interspecific hybridization of B. oleracea and B. campestris lines with defined S-allele constitutions. These lines, which represent 29 different S-allele combinations, were tested in a diallel of test-pollinations to determine the activity of the introgressed S-alleles and intergenomic dominance relationships. Some consistent trends were observed: B. oleracea S-alleles high in the dominance series (e.g. S8, S14, S29) were always active in the resynthesized B. napus lines, whereas recessive S-alleles (S2, S15) lost their activity in some test combinations. The B. campestris S-alleles were active in most cases, although 2 alleles were partially inactivated by the recessive B. oleracea allele S15.  相似文献   

14.
Summary To examine the possibility of producing asymmetric somatic hybrids of Brassica having a complete genome of one species and a part of the other, we fused inactivated B. oleracea protoplasts with X-irradiated B. campestris protoplasts. The plants obtained were studied with regard to their morphology, isozymes and chromosomes. The morphology of the hybrids was similar to B. oleracea in 9 out of 22 hybrids studied and the rest showed the intermediate phenotype of the parents. Analysis of three isozymes, leucine aminopeptidase, acid phosphatase and esterase indicated that ten hybrids lost B. campestris-specific bands in one or more of the three isozymes examined. The chromosome analysis showed that 90% of the hybrids were aneuploids. In addition, abnormal chromosomes were often found in root tip cells. These results suggested that the hybrids obtained were asymmetric in nature and resulted from elimination of B. campestris chromosomes by X-ray irradiation.  相似文献   

15.
Mitochondrial DNA (mtDNA) from 13 cytoplasmic male-sterile (cms) lines from diverse sources were characterized by Southern blot hybridization to pearl millet and maize mtDNA probes. Hybridization patterns of mtDNA digested with PstI, BamHI, SmaI or XhoI and probed with 13.6-, 10.9-, 9.7- or 4.7-kb pearl millet mtDNA clones revealed similarities among the cms lines 5141 A and ICMA 1 (classified as the S-A1 type of cytoplasm based on fertility restoration patterns), PMC 30A and ICMA 2. The remaining cms lines formed a distinct group, within which three subgroups were evident. Among the maize mitochondiral gene clones used, the coxI probe revealed two distinct groups of cytoplasms similar to the pearl millet mtDNA clones. The atp9 probe differentiated the cms line 81 A4, derived from P. glaucum subsp. monodii, while the coxII gene probe did not detect any polymorphism among the cms lines studied. MtDNA digested with BamHI, PstI or XhoI and hybridized to the atp6 probe revealed distinct differences among the cms lines. The maize atp6 gene clone identified four distinct cytoplasmic groups and four subgroups within a main group. The mtDNA fragments hybridized to the atp6 gene probe with differing intensities, suggesting the presence of more than one copy of the gene in different stoichiometries. Rearrangements involving the coxI and/or rrn18-rrn5 genes (mapped within the pearl millet clones) probably resulted in the S-A1 type of sterility. Rearrangements involving the atp6 gene (probably resulting in chimeric form) may be responsible for male sterility in other cms lines of pearl millet.  相似文献   

16.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

17.
Organelle inheritance in intergeneric hybrids of Festuca pratensis and Lolium perenne was investigated by restriction enzyme and Southern blot analyses of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA). All F1 hybrids exhibited maternal inheritance of both cpDNA and mtDNA. However, examination of backcross hybrids, obtained by backcrossing the intergeneric F1 hybrids to L. Perenne, indicated that both uniparental maternal organelle inheritance and uniparental paternal organelle inheritance can occur in different backcross hybrids.  相似文献   

18.
Summary Attempts were made to produce intergeneric hybrids between Enarthrocarpus lyratus, a wild species, and several species of crop brassicas: B. campestris, B. nigra, B. oleracea, B. juncea, B. napus and B. Carinata. Hybrids using E. lyratus as female parent were realized by means of embryo rescue in four combinations — E. lyratus x B. campestris, E. lyratus x B. oleracea, E. lyratus x B. napus and E. lyratus x B. carinata. Reciprocal crosses showed strong pre-fertilization barriers and yielded no hybrids except in one combination — B. Juncea x E. Lyratus — in which a single hybrid could be realized. All of the hybrids were multiplied in vitro through the multiplication of axillary shoots. Morphological and cytological studies confirmed hybridity. All hybrids were completely pollen sterile except for E. lyratus x B. carinata, which showed 2% pollen fertility. Attempts to double the chromosome number through the in vitro application of colchicine to axillary meristems of F1 hybrids were successful in only one hybrid, E. lyratus x B. oleracea. Cytological studies of the hybrids indicated the presence of a partial homology between the genomes of E. lyratus and crop brassicas. Backcross progenies were raised from all of the five F1 hybrids to develop malesterile alloplasmic lines.  相似文献   

19.
Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape genetic material into this population. Markers were transferred to the backcross generation with frequencies ranging from 26% to 91%. Almost all of the markers (30/33) were transferred in a frequency not significantly different from 50%. Analysis of the pairwise segregation of markers revealed that 23 markers could be assigned to six linkage groups, most probably reflecting six B. napus C-chromosomes. The presence of backcross plants with recombinant genotypes suggests that complex genetic processes can take place during interspecific hybridisation and backcrossing in these Brassica species. The implications of our results for the possible choice of integration sites of transgenes in oilseed rape are discussed.  相似文献   

20.
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号