首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+ [ACh], an inwardly rectifying K1 channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and - 100 mV. Another is the clonal GH, muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. AG protein, G., purified from human red blood cells WC) activates K+[ACh] channels at subpicomolar concentrations; its a subunit is equi-potent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The αk effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic βγ from transducin has no effect while hydropho-bic βγ from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be disSociated from detergent effects. An anti-αk monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the a subunit not the βγ dimer. The techniques of molecular biology are now being used to specify G protein gating. A “bacterial” αi-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC αk.  相似文献   

2.
G protein-gated inwardly rectifying potassium (GIRK) channels are a family of K(+)-selective ion channels that slow the firing rate of neurons and cardiac myocytes. GIRK channels are directly bound and activated by the G protein G beta gamma subunit. As heterotetramers, they comprise the GIRK1 and the GIRK2, -3, or -4 subunits. Here we show that GIRK1 but not the GIRK4 subunit is phosphorylated when heterologously expressed. We found also that phosphatase PP2A dephosphorylation of a protein in the excised patch abrogates channel activation by G beta gamma. Experiments with the truncated molecule demonstrated that the GIRK1 C-terminal is critical for both channel phosphorylation and channel regulation by protein phosphorylation, but the critical phosphorylation sites were not located on the C terminus. These data provide evidence for a novel switch mechanism in which protein phosphorylation enables G beta gamma gating of the channel complex.  相似文献   

3.
Beta gamma dimers of G proteins inhibit atrial muscarinic K+ channels   总被引:4,自引:0,他引:4  
It has been proposed that beta gamma dimers of signal-transducing G proteins mediate muscarinic activation of atrial K+ channels. We examined this hypothesis by testing the effects of beta gamma dimers from four sources (human erythrocytes, human placenta, bovine brain, and bovine retina) on single channel muscarinic K+ (K+[acetylcholine (ACh)]) currents in inside-out membrane patches of adult guinea pig atria. None of the four beta gamma dimer preparations stimulated K+[ACh] currents; on the contrary, each inhibited the currents whether the currents were activated with GTP alone (agonist-independent activity) or with GTP plus a muscarinic agonist (agonist-dependent activity). Detergents at concentrations used to suspend erythrocyte, brain, and placental beta gamma dimers had no effect by themselves, and detergents were not used with the retinal beta gamma dimers. We conclude that beta gamma dimers do not mediate stimulatory effects of the endogenous G protein that regulates the K+ channels. In fact beta gamma dimers appear to inhibit activation by the endogenous G alpha subunits. Further insight into the role of beta gamma dimers came from the observation that agonist-independent GTP-activated K+[ACh] currents were inhibited by beta gamma dimers at about one-tenth the concentration required to inhibit agonist-dependent activation. One possibility is that dimeric beta gamma may have a higher affinity for free alpha subunits than for alpha subunits associated with agonist-occupied receptors. Thus, in addition to the known requirement of beta gamma dimers for the interaction of alpha subunits with receptors, beta gamma dimers may also improve the signal-to-noise ratio for agonists by reducing agonist-independent background activities.  相似文献   

4.
Two cDNAs that encode the G protein-coupled inwardly rectifying K(+) channel (GIRK, Kir3) of tunicate tadpoles (tunicate G protein-coupled inwardly rectifying K(+) channel-A and -B; TuGIRK-A and -B) have been isolated. The deduced amino acid sequences showed approximately 60% identity with the mammalian Kir3 family. Detected by whole mount in situ hybridization, both TuGIRK-A and -B were expressed similarly in the neural cells of the head and neck region from the tail bud stage to the young tadpole stage. By co-injecting cRNAs of TuGIRK-A and G protein beta(1)/gamma(2) subunits (Gbetagamma) in Xenopus oocytes, an inwardly rectifying K(+) current was expressed. In contrast, coinjection of TuGIRK-B with Gbetagamma did not express any current. When both TuGIRK-A and -B were coexpressed together with Gbetagamma, an inwardly rectifying K(+) current was also detected. The properties of this current clearly differed from those of TuGIRK-A current, since it displayed a characteristic decline of the macroscopic conductance at strongly hyperpolarized potentials. TuGIRK-A/B current also differed from TuGIRK-A current in terms of the lower sensitivity to the Ba(2+) block, the higher sensitivity to the Cs(+) block, and the smaller single channel conductance. Taken together, we concluded that TuGIRK-A and -B form functional heteromultimeric G protein-coupled inwardly rectifying K(+) channels in the neural cells of the tunicate tadpole. By introducing a mutation of Lys(161) to Thr in TuGIRK-B, TuGIRK-A/B channels acquired a higher sensitivity to the Ba(2+) block and a slightly lower sensitivity to the Cs(+) block, and the decrease in the macroscopic conductance at hyperpolarized potentials was no longer observed. Thus, the differences in the electrophysiological properties between TuGIRK-A and TuGIRK-A/B channels were shown to be, at least partly, due to the presence of Lys(161) at the external mouth of the pore of the TuGIRK-B subunit.  相似文献   

5.
In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers.  相似文献   

6.
K(+) channels composed of G-protein-coupled inwardly rectifying K(+) channel (GIRK) (Kir3.0) subunits are expressed in cardiac, neuronal, and various endocrine tissues. They are involved in inhibiting excitability and contribute to regulating important physiological functions such as cardiac frequency and secretion of hormones. The functional cardiac (K((ACh))) channel activated by G(i)/G(o)-coupled receptors such as muscarinic M(2) or purinergic A(1) receptors is supposed to be composed of the subunits GIRK1 and GIRK4 in a heterotetrameric (2:2) fashion. In the present study, we have manipulated the subunit composition of the K((ACh)) channels in cultured atrial myocytes from hearts of adult rats by transient transfection of vectors encoding for GIRK1 or GIRK4 subunits or GIRK4 concatemeric constructs and investigated the effects on properties of macroscopic I(K(ACh)). Transfection with a GIRK1 vector did not cause any measurable effect on properties of I(K(ACh)), whereas transfection with a GIRK4 vector resulted in a complete loss in desensitization, a reduction of inward rectification, and a slowing of activation. Transfection of myocytes with a construct encoding for a concatemeric GIRK4(2) subunit had similar effects on desensitization and inward rectification. Following transfection of a tetrameric construct (GIRK4(4)), these changes in properties of I(K(ACh)) were still observed but were less pronounced. Heterologous expression in Chinese hamster ovary cells and human embryonic kidney 293 cells of monomeric, dimeric, and tetrameric GIRK4 resulted in robust currents activated by co-expressed A(1) and M(2) receptors, respectively. These data provide strong evidence that homomeric GIRK4 complexes form functional G(beta)gamma gated ion channels and that kinetic properties of GIRK channels, such as activation rate, desensitization, and inward rectification, depend on subunit composition.  相似文献   

7.
Voltage-gated Ca2+ channels of the N-, P/Q-, and R-type and G protein inwardly rectifying K+ channels (GIRK) are modulated via direct binding of G proteins. The modulation is mediated by G protein betagamma subunits. By using electrophysiological recordings and fluorescence resonance energy transfer, we characterized the modulatory domains of the G protein beta subunit on the recombinant P/Q-type channel and GIRK channel expressed in HEK293 cells and on native non-L-type Ca2+ currents of cultured hippocampal neurons. We found that Gbeta2 subunit-derived deletion constructs and synthesized peptides can either induce or inhibit G protein modulation of the examined ion channels. In particular, the 25-amino acid peptide derived from the Gbeta2 N terminus inhibits G protein modulation, whereas a 35-amino acid peptide derived from the Gbeta2 C terminus induced modulation of voltage-gated Ca2+ channels and GIRK channels. Fluorescence resonance energy transfer (FRET) analysis of the live action of these peptides revealed that the 25-amino acid peptide diminished the FRET signal between G protein beta2gamma3 subunits, indicating a reorientation between G protein beta2gamma3 subunits in the presence of the peptide. In contrast, the 35-amino acid peptide increased the FRET signal between GIRK1,2 channel subunits, similarly to the Gbetagamma-mediated FRET increase observed for this GIRK subunit combination. Circular dichroism spectra of the synthesized peptides suggest that the 25-amino acid peptide is structured. These results indicate that individual G protein beta subunit domains can act as independent, separate modulatory domains to either induce or inhibit G protein modulation for several effector proteins.  相似文献   

8.
G proteins play a critical role in transducing a large variety of signals into intracellular responses. Increasingly, there is evidence that G proteins may play other roles as well. Dominant-negative constructs of the alpha subunit of G proteins would be useful in studying the roles of G proteins in a variety of processes, but the currently available dominant-negative constructs, which target Mg2+-binding sites, are rather leaky. A variety of studies have implicated the carboxyl terminus of G protein alpha subunits in both mediating receptor-G protein interaction and in receptor selectivity. Thus we have made minigene plasmid constructs that encode oligonucleotide sequences corresponding to the carboxyl-terminal undecapeptide of Galphai, Galphaq, or Galphas. To determine whether overexpression of the carboxyl-terminal peptide would block cellular responses, we used as a test system the activation of the M2 muscarinic receptor activated K+ channels in HEK 293 cells. The minigenes were transiently transfected along with G protein-regulated inwardly rectifying K+ channels (GIRK) into HEK 293 cells that stably express the M2 muscarinic receptor. The presence of the Galphai carboxyl-terminal peptide results in specific inhibition of GIRK activity in response to agonist stimulation of the M2 muscarinic receptor. The Galphai minigene construct completely blocks agonist-mediated M2 mAChR K+ channel response whereas the control minigene constructs (empty vector, pcDNA3.1, and the Galpha carboxyl peptide in random order, pcDNA-GalphaiR) had no effect on agonist-mediated M2 muscarinic receptor GIRK response. The inhibitory effects of the Galphai minigene construct were specific because overexpression of peptides corresponding to the carboxyl terminus of Galphaq or Galphas had no effect on M2 muscarinic receptor stimulation of the K+ channel.  相似文献   

9.
The negative inotropic effect of acetylcholine (ACh) in atrial muscle can be accounted for by a decrease of a voltage- and time-dependent slow inward current (Isi) carried by Ca2+/Na+ and an increase of outward time-dependent current carried by K+ (IK1) through inwardly rectifying channels. The negative inotropic effect of ACh in ventricular muscle is associated with a reduction of Isi; there is no important effect of ACh on IK1 in ventricular muscle. Because atrial and ventricular muscles display IK1 that is sensitive to Ba2+ and have similar numbers of muscarinic receptor sites, it is concluded that ventricular muscle lacks a metabolic link between the muscarinic receptor and inwardly rectifying K+ channels. Although there is much evidence for cyclic nucleotides as the mediator between muscarinic receptors and Isi channels, cyclic nucleotides do not seem to connect these receptors with inwardly rectifying K+ channels. According to this hypothesis, identification of a metabolic link between muscarinic receptors and IK1 channels should be demonstrable in atrial but not ventricular muscle.  相似文献   

10.
Muscarinic K+ (KACh) channels are key determinants of the inhibitory synaptic transmission in the heart. These channels are heterotetramers consisting of two homologous subunits, G-protein-gated inwardly rectifying K+ (GIRK)1 and GIRK4, and have unitary conductance of approximately 35 pS with symmetrical 150 mM KCl solutions. Activation of atrial KACh channels, however, is often accompanied by the appearance of openings with a lower conductance, suggesting a functional heterogeneity of G-protein-sensitive ion channels in the heart. Here we report the characterization of a small conductance GIRK (scGIRK) channel present in rat atria. This channel is directly activated by Gbetagamma subunits and has a unitary conductance of 16 pS. The scGIRK and KACh channels display similar affinities for Gbetagamma binding and are frequently found in the same membrane patches. Furthermore, Gbetagamma-activated scGIRK channels--like their KACh counterparts--exhibit complex gating behavior, fluctuating among four functional modes conferred by the apparent binding of a different number of Gbetagamma subunits to the channel. The electrogenic efficacy of the scGIRK channels, however, is negligible compared to that of KACh channels. Thus, Gbetagamma subunits employ the same signaling strategy to regulate two ion channels that are apparently endowed with very different functions in the atrial membrane.  相似文献   

11.
Sadja R  Smadja K  Alagem N  Reuveny E 《Neuron》2001,29(3):669-680
G protein-coupled inwardly rectifying potassium channels, GIRK/Kir3.x, are gated by the Gbetagamma subunits of the G protein. The molecular mechanism of gating was investigated by employing a novel yeast-based random mutagenesis approach that selected for channel mutants that are active in the absence of Gbetagamma. Mutations in TM2 were found that mimicked the Gbetagamma-activated state. The activity of these channel mutants was independent of receptor stimulation and of the availability of heterologously expressed Gbetagamma subunits but depended on PtdIns(4,5)P(2). The results suggest that the TM2 region plays a key role in channel gating following Gbetagamma binding in a phospholipid-dependent manner. This mechanism of gating in inwardly rectifying K+ channels may be similar to the involvement of the homologous region in prokaryotic KcsA potassium channel and, thus, suggests evolutionary conservation of the gating structure.  相似文献   

12.
The genome of Caenorhabditis elegans contains representatives of the channel families found in both vertebrate and invertebrate nervous systems. However, it lacks the ubiquitous Hodgkin-Huxley Na+ channel that is integral to long-distance signaling in other animals. Nematode neurons are presumed to communicate by electrotonic conduction and graded depolarizations. This fundamental difference in operating principle may require different channel populations to regulate transmission and transmitter release. We have sampled ionic channels from the somata of two chemosensory neurons (AWA and AWC) of C. elegans. A Ca2+-activated, outwardly rectifying channel has a conductance of 67 pS and a reversal potential indicating selectivity for K+. An inwardly rectifying channel is active at potentials more negative than -50 mV. The inward channel is notably flickery even in the absence of divalent cations; this prevented determination of its conductance and reversal potential. Both of these channels were inactive over a range of membrane potentials near the likely cell resting potential; this would account for the region of very high membrane resistance observed in whole-cell recordings. A very-large-conductance (> 100 pS), inwardly rectifying channel may account for channel-like fluctuations seen in whole-cell recordings.  相似文献   

13.
G protein-coupled inwardly rectifying K+ (GIRK) channels can be activated or inhibited by distinct classes of receptor (G(alpha)i/o- and G(alpha)q-coupled), providing dynamic regulation of cellular excitability. Receptor-mediated activation involves direct effects of G(beta)gamma subunits on GIRK channels, but mechanisms involved in GIRK channel inhibition have not been fully elucidated. An HEK293 cell line that stably expresses GIRK1/4 channels was used to test G protein mechanisms that mediate GIRK channel inhibition. In cells transiently or stably cotransfected with 5-HT1A (G(alpha)i/o-coupled) and TRH-R1 (G(alpha)q-coupled) receptors, 5-HT (5-hydroxytryptamine; serotonin) enhanced GIRK channel currents, whereas thyrotropin-releasing hormone (TRH) inhibited both basal and 5-HT-activated GIRK channel currents. Inhibition of GIRK channel currents by TRH primarily involved signaling by G(alpha)q family subunits, rather than G(beta)gamma dimers: GIRK channel current inhibition was diminished by Pasteurella multocida toxin, mimicked by constitutively active members of the G(alpha)q family, and reduced by minigene constructs that disrupt G(alpha)q signaling, but was completely preserved in cells expressing constructs that interfere with signaling by G(beta)gamma subunits. Inhibition of GIRK channel currents by TRH and constitutively active G(alpha)q was reduced by, an inhibitor of phospholipase C (PLC). Moreover, TRH- R1-mediated GIRK channel inhibition was diminished by minigene constructs that reduce membrane levels of the PLC substrate phosphatidylinositol bisphosphate, further implicating PLC. However, we found no evidence for involvement of protein kinase C, inositol trisphosphate, or intracellular calcium. Although these downstream signaling intermediaries did not contribute to receptor-mediated GIRK channel inhibition, bath application of TRH decreased GIRK channel activity in cell-attached patches. Together, these data indicate that receptor-mediated inhibition of GIRK channels involves PLC activation by G(alpha) subunits of the G(alpha)q family and suggest that inhibition may be communicated at a distance to GIRK channels via unbinding and diffusion of phosphatidylinositol bisphosphate away from the channel.  相似文献   

14.
The mechanism of G protein beta gamma subunit (G beta gamma)-induced activation of the muscarinic K+ channel (KACh) in the guinea pig atrial cell membrane was examined using the inside-out patch clamp technique. G beta gamma and GTP-gamma S-bound alpha subunits (G alpha *'s) of pertussis toxin (PT)-sensitive G proteins were purified from bovine brain. Either in the presence or absence of Mg2+, G beta gamma activated the KACh channel in a concentration-dependent fashion. 10 nM G beta gamma almost fully activated the channel in 132 of 134 patches (98.5%). The G beta gamma-induced maximal channel activity was equivalent to or sometimes larger than the GTP-gamma S-induced one. Half-maximal activation occurred at approximately 6 nM G beta gamma. Detergent (CHAPS) and boiled G beta gamma preparation could not activate the KACh channel. G beta gamma suspended by Lubrol PX instead of CHAPS also activated the channel. Even when G beta gamma was pretreated in Mg(2+)-free EDTA internal solution containing GDP analogues (24-48 h) to inactivate possibly contaminating G i alpha *'s, the G beta gamma activated the channel. Furthermore, G beta gamma preincubated with excessive GDP-bound G o alpha did not activate the channel. These results indicate that G beta gamma itself, but neither the detergent CHAPS nor contaminating G i alpha *, activates the KACh channel. Three different kinds of G i alpha * at 10 pM-10 nM could weakly activate the KACh channel. However, they were effective only in 40 of 124 patches (32.2%) and their maximal channel activation was approximately 20% of that induced by GTP-gamma S or G beta gamma. Thus, G i alpha * activation of the KACh channel may not be significant. On the other hand, G i alpha *'s effectively activated the ATP-sensitive K+ channel (KATP) in the ventricular cell membrane when the KATP channel was maintained phosphorylated by the internal solution containing 100 microM Mg.ATP. G beta gamma inhibited adenosine or mACh receptor-mediated, intracellular GTP-induced activation of the KATP channel. G i alpha *'s also activated the phosphorylated KATP channel in the atrial cell membrane, but did not affect the background KACh channel. G beta gamma subsequently applied to the same patch caused prominent KACh channel activation. The above results may indicate two distinct regulatory systems of cardiac K+ channels by PT-sensitive G proteins: G i alpha activation of the KATP channel and G beta gamma activation of the KACh channel.  相似文献   

15.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

16.
The localization of several GTP-binding regulatory proteins in teh apical membrane of intestinal epithelial cells has prompted us to investigate a possible role for G-proteins as modulators of apical Cl- channels. In membrane vesicles isolated from rat small intestine or human HT29-cl.19A colon carcinoma cells, the entrapment of guanosine 5'-O-(3-thiophosphate (GTP gamma S) led to a large increase in Cl- conductance, as evidenced by an increased 125I- uptake and faster SPQ quenching. The enhancement was observed in the presence, but not in the absence of the K+ ionophore valinomycin, indicating that the increased Cl- permeability is not secondary to the opening of K+ channels. The effect of GTP gamma S was counteracted by guanosine 5'-O-(2-thiophosphate (GDP beta S) and appeared to be independent of cytosolic messengers, including ATP, cAMP, and Ca2+, suggesting that protein phosphorylation and/or phospholipase C activation is not involved. Patch clamp analysis of apical membrane patches of HT29-cl.19A colonocytes revealed a GTP gamma S-activated, inwardly rectifying, anion-selective channel with a unitary conductance of 20 +/- 4 pS. No spontaneous channel openings were observed in the absence of GTP gamma S, while the open time probability (Po) increases dramatically to 0.81 +/- 0.09 upon addition with GTP gamma S. Since the electrophysiological characteristics and regulatory properties of this channel are markedly different from those of the more widely studied cAMP/protein kinase A-operated channel, we propose the existence of a separate Cl(-)-selective ion channel in the apical border of intestinal epithelial cells. Our results suggest an alternative regulatory pathway in transepithelial salt transport and a possible site for anomalous channel regulation as observed in cystic fibrosis patients.  相似文献   

17.
The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and the kinetic rate constants connecting these states are constant. In the alternative fractal model the spontaneous fluctuations of the channel protein at many different time scales are represented by a kinetic rate constant k = At1-D, where A is the kinetic setpoint and D the fractal dimension. Single-channel currents were recorded at 146 mM external K+ from an inwardly rectifying, 120 pS, K+ selective, voltage-sensitive channel in cultured mouse hippocampal neurons. The kinetics of these channels were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimensions were approximately 2 for the closed times and approximately 1 for the open times and did not depend on voltage. For both the open and closed times the logarithm of the kinetic setpoint was found to be proportional to the applied voltage, which indicates that the gating of this channel involves the net inward movement of approximately one negative charge when this channel opens. Thus, the open and closed times and the voltage dependence of the gating of this channel are well described by the fractal model.  相似文献   

18.
We report the identification, functional expression, purification, reconstitution and electrophysiological characterization of an up to now unique prokaryotic potassium ion channel (KcsA). It has a rectifying current-voltage relationship and displays subconductance states, the largest of which amounts to A approximately equal to 90 pS. The channel is blocked by Cs- ions and gating requires the presence of Mg2+ ions. The kcsA gene has been identified in the gram-positive soil bacterium Streptomyces lividans. It encodes a predicted 17.6 kDa protein with two potential membrane-spanning helices linked by a central domain which shares a high degree of similarity with the H5 segment conserved among eukaryotic ion channels. Multiple alignments of deduced amino acids suggest that the novel channel has the closest kinship to the S5, H5 and S6 regions of voltage-gated K+ channel families, mainly to the subfamily represented by the Shaker protein from Drosophila melanogaster. Moreover, KcsA is most distantly related to eukaryotic inwardly rectifying channels with two putative predicted transmembrane segments.  相似文献   

19.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

20.
Summary K currents and K-current fluctuations were recorded in inwardly rectifying K channels of frog skeletal muscle under voltage-clamp conditions. External application of 0.2 to 10mm Cs reduces the inward mean K current but produces a distinct increase of the spectral density of K-current fluctuations. The additional fluctuations arise from the random blocking by Cs ions. From the variance of current fluctuations, the steady-state current and the probability of the open unblocked channel an effective single-channel conductance * was calculated. * strongly depends on the external Cs concentration (7.8 pS at 0.2mm Cs, 2.1 pS at 10mm Cs). This dependence is interpreted in terms of a two-step blocking process: (1) a fast exchange of Cs ions between the external solution and a first binding site inside the channel which leads to the Cs-modulated effective single-channel conductance, and (2) a slow Cs binding to a second site deeper in the channel which produces the observed current fluctuations. With this hypothesis we obtained a real single-channel conductance of 10 pS and a real density ofn4 inwardly rectifying channels per m2 of muscle surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号