首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (P N) half of that of wild type parent, we measured the response curve of P N to intercellular CO2 concentration (C i), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv′/Fm′), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on C i, ETR at saturation irradiance, and Fv′/Fm′, ΦPS2, and qP under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700+ re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy.  相似文献   

2.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

3.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

4.
The mechanism of energy-dependent quenching (qE) of chlorophyll fluorescence was studied employing photoacoustic measurements of oxygen evolution and heat release. It is shown that concomitant to the formation of qE the yield of open reaction centers p decreases indicating that qE quenching originates from a process being competitive to fluorescence as well as to photochemistry. The analysis of heat release (rate of thermal deactivation) shows: 1. The competitive process is not given by a still unknown energy storing process. 2. If the competitive process would be a futile cycle the life-times of the involved intermediates had to be faster than 50 s.The results of the photoacoustic measurements are in line with the idea that qE quenching originates from an increased probability of thermal deactivation of excited chlorophylls.Abbreviations F actual fluorescence - Fm fluorescence yield with all PS II reaction centers closed in a light adapted state - F0 fluorescence yield with all PS II reaction centers open in a light adapted state - PS Photosystem - p intrinsic photochemical yield - qE energy-dependent quenching - qI photoinhibition quenching - qN non-photochemical quenching - qP photochemical quenching - qT state transition quenching  相似文献   

5.
We tested the usefulness of chlorophyll a fluorescence quenching analysis for the selection of maize parental inbred lines able to produce F1 hybrids with a high CO2 assimilation rate during growth at suboptimal temperature. Fifty inbred lines, grown at 15 °C, showed at 6 °C a broad genetic variability regarding the quantum yield of photosynthetic electron transport (PS2). A decrease of PS2 in sensitive lines was caused more by reduction of the efficiency of excitation energy capture by open photosystem 2 (PS2) reaction centres (Fv'/Fm') than by a drop in photochemical quenching (qP). Selected inbred lines with the highest (H) and the lowest (L) values of PS2 were used for separate crossings in a diallelic arrangement. Twenty-one of H×H hybrids and 21 of the L×L hybrids were grown at 15 °C. The H×H hybrids showed at suboptimal temperature a significantly higher transport of photosynthetic electrons than the L×L hybrids at lower (400) as well as at higher [800 mol(photon) m–2 s–1] irradiance. The mean net photosynthetic rate (P N) in H×H and L×L hybrids amounted to 8.4 and 5.8 (second leaf) and 8.5 and 7.6 mol(CO2) m–2 s–1 (third leaf), respectively. Among the best 20 hybrids with regard to P N (values larger than the average) of second leaves, as many as 15 were derived from H lines (75 % of hybrids), whereas among the best 21 hybrids with regard to P N of the third leaves, 16 were derived from H lines (76 % of hybrids). The intensive P N of H×H hybrids was most often accompanied by less water lost via transpiration in relation to photosynthesis than in the hybrids of L lines. Hence an analysis of chlorophyll a fluorescence quenching enables the selection of inbred lines, which can produce hybrids with improved CO2 fixation and with efficient water management during growth at suboptimal temperature.  相似文献   

6.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

7.
Photosystem II chlorophyll fluorescence and leaf net gas exchanges (CO2 and H2O) were measured simultaneously on bean leaves (Phaseolus vulgaris L.) submitted either to different ambient CO2 concentrations or to a drought stress. When leaves are under photorespiratory conditions, a simple fluorescence parameter F/ Fm (B. Genty et al. 1989, Biochem. Biophys. Acta 990, 87–92; F = difference between maximum, Fm, and steady-state fluorescence emissions) allows the calculation of the total rate of photosynthetic electron-transport and the rate of electron transport to O2. These rates are in agreement with the measurements of leaf O2 absorption using 18O2 and the kinetic properties of ribulose-1,5bisphosphate carboxylase/oxygenase. The fluorescence parameter, F/Fm, showed that the allocation of photosynthetic electrons to O2 was increased during the desiccation of a leaf. Decreasing leaf net CO2 uptake, either by decreasing the ambient CO2 concentration or by dehydrating a leaf, had the same effect on the partitioning of photosynthetic electrons between CO2 and O2 reduction. It is concluded that the decline of net CO2 uptake of a leaf under drought stress is only due, at least for a mild reversible stress (causing at most a leaf water deficit of 35%), to stomatal closure which leads to a decrease in leaf internal CO2 concentration. Since, during the dehydration of a leaf, the calculated internal CO2 concentration remained constant or even increased we conclude that this calculation is misleading under such conditions.Abbreviations Ca, Ci ambient, leaf internal CO2 concentrations - Fm, Fo, Fs maximum, minimal, steady-state fluorescence emission - Fv variable fluorescence emission - PPFD photosynthetic photon flux density - qp, qN photochemical, non-photochemical fluorescence quenching - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

8.
This paper examines the effect of inorganic carbon transport and accumulation in Synechococcus PCC7942 on fluorescence quenching, photosynthetic oxygen reduction and both linear and cyclic electron flow. The data presented support the previous findings of Miller et al. (1991) that the accumulation of Ci by the CO2 concentrating mechanism is able to stimulate oxygen photoreduction, particularly so when CO2 fixation is inhibited by PCR cycle inhibitors such as glycolaldehyde. This effect is found with both high and low-Ci grown cells, but the potential for oxygen photoreduction is about two-fold higher in low-Ci grown cells. This greater potential for O2 photoreduction is also correlated with a higher ability of low-Ci cells to photoreduce H2O2. Experiments with a mutant which transports Ci but does not accumulate it internally, indicates that the stimulation of O2 photoreduction appears to be a direct effect of the internal accumulation of Ci rather than from its participation in the transport process. In the absence of Ci, no specific partial reactions of photosynthetic electron transport appear to be inhibited, and the PS 1 acceptors PNDA and MV as well as the PS 2 acceptor DMQ can all run electron transport at levels approaching those during active CO2 fixation. Measurements of P700+ show that when the cells are depleted of Ci during photosynthesis, P700 becomes more oxidised. This indicates that the resupply of electrons from the intersystem chain is relatively more restricted under conditions of Ci limitation than is the availability of PS 1 electron acceptors. It is proposed that the accumulated Ci pool can directly stimulate the ability of O2 to act as a PS 1 acceptor and that the ability of PS 1 acceptors, such as O2, to relieve restrictions on intersystem electron transfer is perhaps a result of a reduction in cyclic electron flow and a subsequent increase in the oxidation state of the plastoquinone pool.Abbreviations BTP 1,3-bis[tris(hydroxymethyl)-methylaminopropane] - CA carbonic anhydrase' - Ci inorganic carbon (CO2+HCO3 +CO3 2–) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,6-dimethylbenzoquinone - EZ ethoxyzolamide or 6-ethoxy-2-benzothiazole-sulfonamide - FCCP carbonyl cyanide p-trifluoro methoxyphenyl-hydrazone - F steady-state chlorophyll fluorescence - Fm chlorophyll fluorescence during a saturating light pulse - Fo chlorophyll fluorescence in the dark, prior to illumination by actinic light - MV methyl viologen or 1,1-dimethyl-4,4-bipyridinium dichloride - PCR cycle photosynthetic carbon reduction cycle - PNDA N,N-dimethyl-p-nitrosoaniline - PS 1 the quantum yield of Photosystem 1 - PS 2 the quantum yield of Photosystem 2  相似文献   

9.
The relationships among the leaf adenylate energy charge, the xanthophyll-cycle components, and photosystem II (PSII) fluorescence quenching were determined in leaves of cotton (Gossypium hirsutum L. cv. Acala) under different leaf temperatures and different intercellular CO2 concentrations (Ci). Attenuating the rate of photosynthesis by lowering the Ci at a given temperature and photon flux density increased the concentration of high-energy adenylate phosphate bonds (adenylate energy charge) in the cell by restricting ATP consumption (A.M. Gilmore, O. Björkman 1994, Planta 192, 526–536). In this study we show that decreases in photosynthesis and increases in the adenylate energy charge at steady state were both correlated with decreases in PSII photo-chemical efficiency as determined by chlorophyll fluorescence analysis. Attenuating photosynthesis by decreasing Ci also stimulated violaxanthin-de-epoxidation-dependent nonradiative dissipation (NRD) of excess energy in PSII, measured by nonphotochemical fluorescence quenching. However, high NRD levels, which indicate a large trans-thylakoid proton gradient, were not dependent on a high adenylate energy charge, especially at low temperatures. Moreover, dithiothreitol at concentrations sufficient to fully inhibit violaxanthin de-epoxidation and strongly inhibit NRD, affected neither the increased adenylate energy charge nor the decreased PSII photo-chemical efficiency that result from inhibiting photosynthesis. The build-up of a high adenylate energy charge in the light that took place at low Ci and low temperatures was accompanied by a slowing of the relaxation of non-photochemical fluorescence quenching after darkening. This slowly relaxing component of nonphotochemical quenching was also correlated with a sustained high adenylate energy charge in the dark. These results indicate that hydrolysis of ATP that accumulated in the light may acidify the lumen and thus sustain the level of NRD for extended periods after darkening the leaf. Hence, sustained nonphotochemical quenching often observed in leaves subjected to stress, rather than being indicative of photoinhibitory damage, apparently reflects the continued operation of NRD, a photoprotective process.Abbreviations A antheraxanthin - adenylate kinase (myokinase), ATP:AMPphosphotransferase - Ci intercellular CO2 concentration - DPS de-epoxidation state of violaxanthin, ([Z+A]/[V+A+Z]) - DTT dithiothreitol - pH trans-thylakoid proton gradient - [2ATP+ADP] - F steady-state fluorescence in the presence of NRD - FM maximal fluorescence in the absence of NRD - FM maximal fluorescence in the presence of NRD - NRD nonradiative energy dissipation - PET photosynthetic electron transport rate - PFD photon flux density - PSII photon yield of PSII photochemistry at the actual reduction state in the light or dark - QA the primary electron acceptor of PSII - [ATP+ADP+AMP] - SVN Stern-Volmer nonphotochemical quenching - V violaxanthin - Z zeaxanthin We thank Connie Shih for skillful assistance in growing plants and for conducting HPLC analyses. A Carnegie Institution Fellowship to A.G. is also gratefully acknowledged.  相似文献   

10.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

11.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

12.
K. J. van Wijk  G. H. Krause 《Planta》1991,186(1):135-142
Photoinhibition of photosynthesis in vivo is shown to be considerably promoted by O2 under circumstances where energy turnover by photorespiration and photosynthetic carbon metabolism are low. Intact protoplasts of Valerianella locusta L. were photoinhibited by 30 min irradiation with 3000 mol photons · m–2 · s–1 at 4° C in saturating [CO2] at different oxygen concentrations, corresponding to 2–40% O2 in air. The photoinhibition of light-limited CO2-dependent photosynthetic O2 evolution increased with increasing oxygen concentration. The uncoupled photochemical activity of photosystem II, measured in the presence of the electron acceptor 1,4-benzoquinone, and maximum variable fluorescence, Fv, were strongly affected and this inhibition was closely correlated to the O2 concentration. The effect of O2 did not saturate at the highest concentrations applied. An increase in photoinhibitory fluorescence quenching with [O2], although less pronounced than in protoplasts, was also observed with intact leaves irradiated at 4° C in air. Initial fluorescence, Fo, was slightly (about 10%) increased by the inhibitory treatments but not influenced by [O2]. A long-term cold acclimation of the plants did not substantially alter the O2-sensitivity of the protoplasts under the high-light treatment. From these experiments we conclude that oxygen is involved in the photoinactivation of photosystem II by excess light in vivo.Abbreviations and Symbols Chl chlorophyll - Fo initial fluorescence - FM maximum fluorescence - Fv maximum variable fluorescence - PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PFD photon flux density - qN non-photochemical quenching - qP photochemical quenching - S quantum efficiency of electron transport of photosystem II This study was financially supported by the Deutsche Forschungs-gemeinschaft (SFB 189) and the Foundation for Fundamental Biological Research (BION), which is subsidised by the Netherlands Organization for the Advancement of Pure Research (NWO).  相似文献   

13.
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0 chlorophyll fluorescence levels - exc quantum efficiency of excitation energy capture by open Photosystem II - PS II quantum efficiency of electron flow through Photosystem II - P515 field indicating rapid absorbance change peaking at 522 nm - P700 primary donor of Photosystem I - QA primary quinone acceptor in Photosystem II - QN non-photochemical fluorescence quenching - Qq photochemical quenching of chlorophyll fluorescence  相似文献   

14.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

15.
During the midday depression of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and -carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.Abbreviations and symbols ci concentration of CO2 within the leaf - Fo instantaneous fluorescence emission - FM maximum fluorescence emission - Fv variable fluorescence emission - PFD photon flux density (400–700 nm) - PSI, II photosystem I, II - TL leaf temperature  相似文献   

16.
Zhang  Shouren  Gao  Rongfu 《Photosynthetica》2000,37(4):559-571
Diurnal changes in net photosynthetic rate (P N), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of P N, photosystem 2 (PS2) efficiency, stomatal conductance (g s), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C 1). A linear relationship was found between g s and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and P N. There was a consensus for two fluorescence indicators (1 – qP/qN and (Fm' – F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to P N, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations.  相似文献   

17.
The function of photosystem (PS)II during desiccation and exposure to high photon flux density (PFD) was investigated via analysis of chlorophyll fluorescence in the desert resurrection plant Selaginella lepidophylla (Hook. and Grev.) Spring. Exposure of hydrated, physiologically competent stems to 2000 mol · m–2 · s–1 PFD caused significant reductions in both intrinsic fluorescence yield (FO) and photochemical efficiency of PSII (FV/FM) but recovery to pre-exposure values was rapid under low PFD. Desiccation under low PFD also affected fluorescence characteristics. Both FV/FM and photochemical fluorescence quenching remained high until about 40% relative water content and both then decreased rapidly as plants approached 0% relative water content. In contrast, the maximum fluorescence yield (FM) decreased and non-photochemical fluorescence quenching increased early during desiccation. In plants dried at high PFD, the decrease in FV/FM was accentuated and FO was reduced, however, fluorescence characteristics returned to near pre-exposure values after 24-h of rehydration and recovery at low PFD. Pretreatment of stems with dithiothreitol, an inhibitor of zeaxanthin synthesis, accelerated the decline in FV/FM and significantly increased FO relative to controls at 925 mol · m–2 · s–1 PFD, and the differences persisted over a 3-h low-PFD recovery period. Pretreatment with dithiothreitol also significantly decreased non-photochemical fluorescence quenching, increased the reduction state of QA, the primary electron acceptor of PSII, and prevented the synthesis of zeaxanthin relative to controls when stems were exposed to PFDs in excess of 250 mol · m–2 · s–1. These results indicate that a zeaxanthin-associated mechanism of photoprotection exists in this desert pteridophyte that may help to prevent photoinhibitory damage in the fully hydrated state and which may play an additional role in protecting PSII as thylakoid membranes undergo water loss.Abbreviations and Symbols DTT dithiothreitol - EPS epoxidation state - FO yield of instantaneous fluorescence at open PSII centers - FM maximum yield of fluorescence at closed PSII centers induced by saturating light - FM FM determined during actinic illumination - FV yield of variable fluorescence (FM-FO) - FV/FM photochemical efficiency of PSII - qP photochemical fluorescence quenching - qNP non-photochemical fluorescence quenching of Schreiber et al. (1986) - NPQ non-photochemical fluorescence quenching from the Stern-Volmer equation - PFD photon flux density - RWC relative water content This paper is based on research done while W.G.E. was on leave of absence at Duke University during the fall of 1990. We would like to thank Dan Yakir, John Skillman, Steve Grace, and Suchandra Balachandran and many others at Duke University for their help and input with this research. Dr. Barbara Demmig-Adams provided zeaxanthin for standard-curve purposes.  相似文献   

18.
Two green algal species, Chlamydomonas reinhardtii and Scenedesmus obliquus, exhibited a relative maximum during the decay of luminescence, when adapted to low CO2 conditions that was not observed in high CO2 adapted cells.From the kinetics of transient changes in the level of dark fluorescence, after illumination and parallel to the luminescence maxima, it was concluded that the maximum in Scenedesmus was mainly related to a decrease in nonphotochemical quenching, whereas in Chlamydomonas the maximum was mainly related to a dark reduction of the primary PS II acceptor QA.ATP/ADP ratios from low CO2 adapted Scenedesmus showed transient high levels after a dark/light transition that was not observed in high CO2 adapted cells. After 30 s of illumination the ATP/ADP ratios however stabilized at the same steady state level as in high CO2 adapted cells.Dark addition of HCO3 - to low CO2 adapted cells of Chlamydomonas resulted in a rapid transient quenching of luminescence that was not observed in low CO2 adapted cells of neither species.It is concluded that the luminescence maxima present in both low CO2 adapted Scenedesmus and Chlamydomonas reflect adaptation of the cells to low CO2 conditions. It is further suggested that the difference in mechanistic origin of luminescence maxima in the two species reflects differences in adaptation.Abbreviations ADP adenosine-diphosphate - ATP adenosine-triphosphate - Ci inorganic carbon - FD dark fluorescence recorded under dark adapted conditions - F0 fluorescence with all reaction centers open - FV variable fluorescence - PS I photosystem I - PS II photosystem II - QA the first quinone acceptor of PS II  相似文献   

19.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB m-dinitrobenzene - FM maximum Chl fluorescence - F0 initial fluorescence - Fv variable fluorescence - I pheophytin a primary electron acceptor of PS2 - P680 chlorophyll a of photochemical centre - PS2 photosystem 2 - QA primary stable electron acceptor of PS2 - Chl chlorophyll - LHC2 light harvesting Chl a/b complex of PS2 - MES 2(N-morpholino) ethanesulfonic acid - DCMU 3-(3-4-dichlorophenyl) 1-1 dimethylurea - PPBQ phenyl-p-benzo-quinone - BBY PS2-enriched membranes prepared as in Berthold et al. (1981) - Q400 PS2 electron acceptor with a midpoint potential of 400 mV  相似文献   

20.
Carbon assimilation of spinach (Spinacia oleracea L.) leaves was measured in the presence of 2000l· l–1CO2 and 2% O2 in the gas phase to suppress photorespiratory reactions and to reduce stomatal diffusion resistance. Simultaneously, membrane parameters such as modulated chlorophyll fluorescence, oxidation of P700 in the reaction centre of photosystem I, and apparent changes in absorbance at 535 nm were recorded. After light-regulated enzymes were activated at a high irradiance, illumination was changed. About 3 min later (to maintain the previous activation state of enzymes), leaves were shock-frozen and freeze-dried. Chloroplasts were isolated nonaqueously and analysed for ATP, ADP, inorganic phosphate, NADPH and NADP. Observations made under the chosen conditions differed in some important aspects from those commonly observed when leaves are illuminated in air. (i) Not only assimilation, but also the phosphorylation potential [ATP]/([ADP]·[Pi]) increased hyperbolically with irradiance towards saturation. In contrast, the ratio of NADPH to NADP did not change much as irradiances increased from low to high photon flux densities. When ATP, the phosphorylation potential and the assimilatory force, FA (the product of phosphorylation potential and NADPH/NADP ratio), were plotted against assimilation, ATP increased relatively less than assimilation, whereas the phosphorylation potential increased somewhat more steeply than assimilation did. A linear relationship existed between assimilation and FA at lower irradiances. The assimilatory force FA increased more than assimilation did when irradiances were very high. Differences from previous observations, where FA was under some conditions higher at low than at high rates of carbon assimilation, are explained by differences in flux resistances caused not only by stomatal diffusion resistance but also by differences in the activity of light-regulated enzymes, (ii) The relationship between P700 oxidation and a fast absorption change with a maximum close to 520 nm on one hand and carbon assimilation on the other hand was largely linear under the specific conditions of the experiments. A similar linear relationship existed also between the quantum efficiency of electron flow through photosystem II and the quantum efficiency of photosystem I electron transport. (iii) Whereas the increase in non-photochemical fluorescence quenching, qN, was similar to the increase in assimilation, the relationship between light scattering and assimilation was distinctly sigmoidal. Light scattering appeared to be a better indicator of control of photosystem II activity under excessive irradiation than qN. (iv) The results are discussed in relation to the relative significance of chloroplast levels of ATP and NADPH and of the assimilatory force FA in driving carbon assimilation. From the observations, the proton/electron (H+/e) ratio of linear electron transport is suggested to be 3 and the H+/ATP ratio to be 4 in leaves. An H+/e ratio of 3 implies the existence of an obligatory Q-cycle in leaves.Abbreviations FA assimilatory force - Fo fluorescence after long dark adaptation - Fm maximum fluorescence level - Fs steady-state fluorescence - PGA 3-phosphoglycerate - PFD photon flux density - P700 (P700+) electron-donor pigment in the reaction center of PSI (its oxidized form) - QA primary quinone acceptor of PSII - qP photochemical quenching - qN non-photochemical quenching - PSII relative quantum efficiency of energy conversation at the level of photosystem II - PSI relative quantum efficiency of photosystem II This research was supported by the Sonderforschungsbereich 251 of the University of Würzburg and the Stiftung Volkswagenwerk. U.G. is a member of the Graduate College of the Julius-von-Sachs Institut für Biowissenschaften, University of Würzburg, being on leave from Tartu University, Tartu, Estonia. The authors are grateful to Prof. A. Laisk, Chair of Plant Physiology, Tartu University, for stimulating discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号