首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate l-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine–tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.  相似文献   

2.
In some bacteria, cysteine is converted to cysteine sulfinic acid by cysteine dioxygenases (CDO) that are only ~15–30% identical in sequence to mammalian CDOs. Among bacterial proteins having this range of sequence similarity to mammalian CDO are some that conserve an active site Arg residue (“Arg‐type” enzymes) and some having a Gln substituted for this Arg (“Gln‐type” enzymes). Here, we describe a structure from each of these enzyme types by analyzing structures originally solved by structural genomics groups but not published: a Bacillus subtilis “Arg‐type” enzyme that has cysteine dioxygenase activity (BsCDO), and a Ralstonia eutropha “Gln‐type” CDO homolog of uncharacterized activity (ReCDOhom). The BsCDO active site is well conserved with mammalian CDO, and a cysteine complex captured in the active site confirms that the cysteine binding mode is also similar. The ReCDOhom structure reveals a new active site Arg residue that is hydrogen bonding to an iron‐bound diatomic molecule we have interpreted as dioxygen. Notably, the Arg position is not compatible with the mode of Cys binding seen in both rat CDO and BsCDO. As sequence alignments show that this newly discovered active site Arg is well conserved among “Gln‐type” CDO enzymes, we conclude that the “Gln‐type” CDO homologs are not authentic CDOs but will have substrate specificity more similar to 3‐mercaptopropionate dioxygenases.  相似文献   

3.
Electron capture dissociation (ECD) represents one of the most recent and significant advancements in tandem mass spectrometry (MS/MS) for the identification and characterization of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally activated dissociation (CAD), ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation—an important attribute for characterizing post-translational modifications. Herein, we present a brief overview of the ECD technique as well as selected applications in characterization of peptides and proteins. Case studies including characterization and localization of amino acid glycosylation, methionine oxidation, acylation, and “top–down” protein mass spectrometry using ECD will be presented. A recent technique, coined as electron transfer dissociation (ETD), will be also discussed briefly.  相似文献   

4.
Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteine sulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5-A resolution, and these results confirm the canonical cupin beta-sandwich fold and the rare cysteinyltyrosine intramolecular cross-link (between Cys(93) and Tyr(157)) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His(86), His(88), and His(140)) and a water molecule. Attempts to acquire a structure with bound ligand using either cocrystallization or soaking crystals with cysteine revealed the formation of a mixed disulfide involving Cys(164) near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploration of the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.  相似文献   

5.
Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.  相似文献   

6.
Envelope glycoprotein 71 from Friend murine leukemia virus was purified to homogeneity by reversed-phase HPLC. It could be shown that all 20 cysteine residues of the molecule are linked by disulfide bonds. After complete tryptic digestion, peptides containing cystine were identified by comparison of the reversed-phase HPLC profile of the digest with that of a reduced aliquot which had been subjected to affinity chromatography on thiol-Sepharose. The locations of the 10 disulfide bonds were determined by isolation, further digestion and analysis of peptides containing cystine. The first cysteine residue of the sequence (Cys46) was shown to be coupled to the sixth (Cys98), leading to a large loop containing four additional cysteine residues. Computer model building and energy calculations led to the assignment of Cys72 to Cys87 and Cys73 to Cys83. The following four cysteine residues of the sequence also constitute a structural unit, with Cys121 bonded to Cys141 and Cys133 to Cys146, and the last two cysteine residues in the amino-terminal domain of glycoprotein 71 form a small loop (Cys178 to Cys184). The first two cysteine residues of the carboxy-terminal domain produce a very small hydrophobic loop (Cys312-Cys315). Cys361 is bound to Cys373, Cys342 to Cys396 and Cys403 to Cys416. A model for the folding pattern of the viral glycoprotein is proposed.  相似文献   

7.
Cysteine dioxygenase (CDO) from rat and other mammals exhibits a covalent post-translational modification between the residues C93 and Y157 that is in close proximity to the active site, and whose presence enhances the enzyme's activity. Protein with and without C93-Y157 crosslink migrates as distinct bands in SDS-PAGE, allowing quantification of the relative ratios between the two forms by densitometry of the respective bands. Expression of recombinant rat wild type CDO in Escherichia coli typically produces 40-50% with the C93-Y157 crosslink. A strategy was developed to increase the ratio of the non-crosslinked form in an enzyme preparation of reasonable quantity and purity, allowing direct assessment of the activity of non-crosslinked CDO and mechanism of formation of the crosslink. The presence of ferrous iron and oxygen is a prerequisite for C93-Y157 crosslink formation. Absence of oxygen during protein expression increased the fraction of non-crosslinked CDO, while presence of the metal chelator EDTA had little effect. Metal affinity chromatography was used to enrich non-crosslinked content. Both the enzymatic rate of cysteine oxidation and the amount of cross-linking between C93 and Y157 increased significantly upon exposure of CDO to air/oxygen and substrate cysteine in the presence of iron in a hitherto unreported two-phase process. The instantaneous activity was proportional to the amount of crosslinked enzyme present, demonstrating that the non-crosslinked form has negligible enzymatic activity. The biphasic kinetics suggest the existence of an as yet uncharacterised intermediate in crosslink formation and enzyme activation.  相似文献   

8.
Mammalian cells contain a pool of iron that is not strongly bound to proteins, which can be detected with fluorescent chelating probes. The cellular ligands of this biologically important “chelatable”, “labile” or “transit” iron are not known. Proposed ligands are problematic, because they are saturated by magnesium under cellular conditions and/or because they are not “safe”, i.e. they allow iron to catalyse hydroxyl radical formation. Among small cellular molecules, certain inositol phosphates (InsPs) excel at complexing Fe3+ in such a “safe” manner in vitro. However, we previously calculated that the most abundant InsP, inositol hexakisphosphate, cannot interact with Fe3+ in the presence of cellular concentrations of Mg2+. In this work, we study the metal complexation behaviour of inositol 1,2,3-trisphosphate [Ins(1,2,3)P 3], a cellular constituent of unknown function and the simplest InsP to display high-affinity, “safe”, iron complexation. We report thermodynamic constants for the interaction of Ins(1,2,3)P 3 with Na+, K+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+. Our calculations indicate that Ins(1,2,3)P 3 can be expected to complex all available Fe3+ in a quantitative, 1:1 reaction, both in cytosol/nucleus and in acidic compartments, in which an important labile iron subpool is thought to exist. In addition, we calculate that the fluorescent iron probe calcein would strip Fe3+ from Ins(1,2,3)P 3 under cellular conditions, and hence labile iron detected using this probe may include iron bound to Ins(1,2,3)P 3. Therefore Ins(1,2,3)P 3 is the first viable proposal for a transit iron ligand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
There are many computer programs that can match tandem mass spectra of peptides to database-derived sequences; however, situations can arise where mass spectral data cannot be correlated with any database sequence. In such cases, sequences can be automatically deduced de novo, without recourse to sequence databases, and the resulting peptide sequences can be used to perform homologous nonexact searches of sequence databases. This article describes details on how to implement both a de novo sequencing program called “Lutefisk,” and a version of FASTA that has been modified to account for sequence ambiguities inherent in tandem mass spectrometry data.  相似文献   

10.
The isoforms Iso-2, Iso-3, and Iso-4 of Escherichia coli-derived recombinant human interferon alpha-2b (rhIFN α-2b), generated by posttranslational modifications of the protein during fermentation, present a major problem in terms of purification and the yield of the drug substance. We report here the structural characterization of these isoforms by mass spectrometry (MS) methods. An extensive MS study was conducted on Iso-4, which is composed of up to 75% of the in-process IFN, and on the native rhIFN α-2b. The trypsin-digested peptide mixtures generated from the two samples were analyzed by liquid chromatography (LC)–MS, and targeted peptides were further studied by LC–tandem MS (triple quadrupole mass spectrometer), high-resolution MSn (LTQ Orbitrap), and matrix-assisted laser desorption/ionization MS (MALDI–MS). The structure of Iso-4 was elucidated as a novel pyruvic acid ketimine derivative of the N-terminal cysteine (Cys1) of IFN α-2b, where the disulfide bond between Cys1 and Cys98 was fully reduced and the other disulfide bond pair, Cys29-ss-Cys138, was partially reduced. Similarly, Iso-2 was identified as a correctly disulfide-folded rhIFN α-2b with acetylation on Cys1, and Iso-3 was identified as an S-glutathionylated form (Cys98) of partially reduced rhIFN α-2b that was pyruvated on Cys1. Based on the characterization work, a reproducible conversion procedure was successfully implemented to convert Iso-4 to rhIFN α-2b.  相似文献   

11.
From an evolutionary point of view, Hydra has one of the most primitive nervous systems among metazoans. Two different groups of peptides that affect neuron differentiation were identified in a systematic screening of peptide signaling molecules in Hydra. Within the first group of peptides, a neuropeptide, Hym-355, was previously shown to positively regulate neuron differentiation. The second group of peptides encompasses the PW family of peptides that negatively regulate neuron differentiation. In this study, we identified the gene encoding PW peptide preprohormone. Moreover, we made the antibody that specifically recognizes LPW. In situ hybridization and immunohistochemical analyses showed that the PW peptides and the gene encoding them were expressed in ectodermal epithelial cells throughout the body except for the basal disk. The PW peptides are produced by epithelial cells and are therefore termed “epitheliopeptides.” Together with Hym-355, the PW family peptides mediate communication between neurons and epithelial cells and thereby maintain a specific density of neurons in Hydra. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Toshio Takahashi, Osamu Koizumi equally contributed to this study.  相似文献   

12.
In this work, we isolated the two new crotamine isoforms from the Crotalus durissus cumanensis rattlesnake venom and its “in vitro” neurotoxic, myotoxic and lethality (DL50) intracerebroventricular (i.c.v.) effects were characterized. These proteins were named IV-2 and IV-3 and were purified by combination of two chromatographic steps on molecular exclusion chromatography on Superdex 75 and reverse phase HPLC (μ-Bondapack C18). The molecular mass of the crotamine isoforms was 4905.96 Da for isoform IV-2 and 4956.97 Da for IV-3 and, as determined by mass spectrometry, and both contained six Cys residues. Enzymatic hydrolysis followed by de novo sequencing by tandem mass spectrometry was used to determine the primary structure of both isoforms. The positions of five sequenced tryptic peptides, including the N-terminal of the isoform IV-2 and four from isoform IV-3 were deduced by comparison with a homologous protein from the crotamine family. The isoforms IV-2 and IV-3 had a sequence of amino acids of 42 amino acid residues IV-2: YKRCHIKGGH CFPKEKLICI PPSSDIGKMD CPWKRKCCKK RS and pI value 9.54 and IV-3: YKQCHKKGGH CFPKEVLICI PPSSDFGKMD CRWKRKCCKK RS with a pI value of 9.54. This protein showed high molecular amino acid sequence identity with other crotamine-like proteins from Crotalus durissus terrificus. These new crotamine isoforms induced potent blockade of neuromuscular transmission in young chicken biventer cervicis preparation and potent myotoxic effect. In mice, both isoforms induced myonecrosis, upon intramuscular or subcutaneous injections. These activities were modulated by the presence of positively charged amino acid residues. The LD50 of isoform IV-2 was 0.07 mg/kg and isoform IV-3 was 0.06 mg/kg the animal weight, by i.c.v. route.  相似文献   

13.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Mobile genetic elements constitute a substantial part of eukaryotic genome and play an important role in its organization and functioning. Co-evolution of retrotransposons and their hosts resulted in the establishment of control systems employing mechanisms of RNA interference that seem to be impossible to evade. However, “active” copies of endogenous retrovirus gypsy escape cellular control in some cases, while its evolutionary elder “inactive” variants do not. To clarify the evolutionary relationship between “active” and “inactive” gypsy we combined two approaches: the analysis of gypsy sequences, isolated from G32 Drosophila melanogaster strain and from different Drosophila species of the melanogaster subgroup, as well as the study of databases, available on the Internet. No signs of “intermediate” (between “active” and “inactive”) gypsy form were found in GenBank, and four full-size G32 gypsy copies demonstrated a convergence that presumably involves gene conversion. No “active” gypsy were revealed among PCR generated gypsy ORF3 sequences from the various Drosophila species indicating that “active” gypsy appeared in some population of D. melanogaster and then started to spread out. Analysis of sequences flanking gypsy variants in G32 revealed their predominantly heterochromatic location. Discrepancy between the structure of actual gypsy sites in G32 and corresponding sequences in database might indicate significant inter-strain heterochromatin diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We have recently reported the primary structures of the three unique peptide inhibitors (SPAI-1, -2, and -3) against Na+, K(+)-ATPase which contained four disulfide bridges in common (Biochem. Biophys. Res. Commun. 164, 496 (1989)). The disulfide connectivities of SPAI were determined by the combination of amino acid analyses with the direct application to a gas-phase sequencer of its proteolytic fragments. The disulfide bond was identified by detection of phenylthiohydantoin derivatives of cystine and its decomposed product dehydroalanine. The four cysteine pairs were disclosed to be Cys20 to Cys49, Cys27 to Cys53, Cys36 to Cys48, and Cys42 to Cys57, all linked by disulfide bridge formation. The allocation pattern of these disulfide bonds was the same as that recently reported for human mucous proteinase inhibitor (EMBO J. 7, 345 (1988], though SPAI showed no proteinase inhibitory activity at all.  相似文献   

16.
In a recent study C8γ (complement protein) with Cys40Ala substitution and a C8α derived peptide with Cys164Ala substitution were co-crystallized and their binding mode was revealed. Computer modeling and molecular dynamics simulations were performed in order to check the hypothesis that the residues Ala164 of C8α and Ala40 of C8γ occupied the right position if cysteine residues were in their place for disulfide bonding. Substitution of these two alanine residues with cysteine along with disulfide bond creation via molecular modeling and subsequent molecular dynamics simulation of the complex corroborated the hypothesis, which was also confirmed from recent crystallographic data. Average RMSD between backbone atoms of the indel peptide during the MD trajectory in comparison with the corresponding sequence of crystal structure of the C8α/γ complex was found only 0.085 nm. Figure Modeling the C*y/α comlexation. Ribbon representation of the C8y complexed with C8α indel peptide initial (green/cyan) X-ray structure and the final MD conformation (magenta/orange) after imposing the disulfide link. Average RMSD between backbone atoms of the indel peptide during MD trajectory in comparison with the corresponding sequence of crystal structure of the C8α/y complex was found only 0.085nm. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The optimal conditions were determined for oxidative folding of the reduced human α-defensins, HNP1, HNP2, HNP3 and HD5, preferentially into their native disulfide structures. Since the human α-defensin-molecule in both reduced and oxidized forms raised a solubility problem arising from its basic and hydrophobic compositions, buffer concentration had to be lowered and cosolvent, such as CH3CN, had to be added to the folding medium in the presence of reduced and oxidized gluthathione (GSH/GSSG) to prevent aggregation and also to realize predominant formation of the native conformer. The four synthetic human α-defensins of high homogeneity were confirmed to exhibit the same antimicrobial potencies against E. coli as those reported for the natural products. All these peptides were shown to possess the native disulfide structure by sequence analyses and mass measurements with cystine segments obtained by enzymatic digestion. Edman degradation allowed for disulfide assignment of cystine segments involving adjacent Cys residues composed of three peptide chains, for which two possible disulfide modes could be considered, with the guidance of the cycles detecting diPTH cystine. As for HNP1, HNP2 and HNP3, however, diPTH cystine was expected at the same cycles in both structures, which would have resulted in not being able to distinguish between the two alternative modes. To avoid this, it was necessary to provide an acetyl tag for the specific peptide chain originating from the N-terminus. Edman degradation of cystine segments tagged with the acetyl group would be a practical procedure for analyzing disulfide structures involving adjacent Cys residues.  相似文献   

18.
Two disulfide bonds in the antitumor antibiotic neocarzinostatin were determined chemically. The peptic and peptic/thermolytic peptides from the native protein were isolated by gel filtration and ion-exchange chromatography followed by reverse-phase HPLC. The cystine peptides obtained were oxidized separately by performic acid treatment and further separated by HPLC into cysteic acid peptides. Sequence analyses of the isolated peptides revealed the location of the disulfide bonds at Cys37-Cys47 and Cys88-Cys93.  相似文献   

19.
Profile of the disulfide bonds in acetylcholinesterase   总被引:20,自引:0,他引:20  
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited proteolysis of these molecules yields a tetramer of catalytic subunits that sediments at 11 S. Each catalytic subunit contains 8 cysteine residues which were identified following tryptic digestion of the reduced, 14C-carboxymethylated protein. The tryptic peptides were purified by gel filtration followed by reverse-phase high performance liquid chromatography (HPLC) and then sequenced. The disulfide bonding profile was determined by treating the native, nonreduced 11 S form of acetylcholinesterase with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to tryptic digestion. Peptides again were resolved by gel filtration and reverse-phase HPLC. One fluorescent cysteine-containing peptide was identified, indicating that a single sulfhydryl residue, Cys231, was present in its reduced form. Three pairs of disulfide-bonded peptides were identified. These were localized in the polypeptide chain based on the cDNA-deduced sequence of the protein and were identified as Cys67-Cys94, Cys254-Cys265, and Cys402-Cys521. Hence, three loops are found in the secondary structure. Cys572, located in the carboxyl-terminal tryptic peptide, was disulfide-bonded to an identical peptide and most likely forms an intersubunit cross-link. Since the 6 cysteine residues in acetylcholinesterase that are involved in intrachain disulfide bonds are conserved in the sequence of the homologous protein thyroglobulin, it is likely that both proteins share a common folding pattern in their respective tertiary structures. Cys231 and the carboxyl-terminal cysteine residue Cys572 are not conserved in thyroglobulin.  相似文献   

20.
Bovine core 2 beta1,6-N-acetylglucosaminyltransferase-M (bC2GnT-M) catalyzes the formation of all mucin beta1,6-N-acetylglucosaminides, including core 2, core 4, and blood group I structures. These structures expand the complexity of mucin carbohydrate structure and thus the functional potential of mucins. The four known mucin beta1,6-N-acetylglucosaminyltransferases contain nine conserved cysteines. We determined the disulfide bond assignments of these cysteines in [(35)S]cysteine-labeled bC2GnT-M isolated from the serum-free conditioned medium of Chinese hamster ovary cells stably transfected with a pSecTag plasmid. This plasmid contains bC2GnT-M cDNA devoid of the 5'-sequence coding the cytoplasmic tail and transmembrane domain. The C18 reversed phase high performance liquid chromatographic profile of the tryptic peptides of reduced-alkylated (35)S-labeled C2GnT-M was established using microsequencing. Each cystine pair was identified by rechromatography of the C8 high performance liquid chromatographic radiolabeled tryptic peptides of alkylated bC2GnT-M on C18 column. Among the conserved cysteines in bC2GnT-M, the second (Cys(113)) was a free thiol, whereas the other eight cysteines formed four disulfide bridges, which included the first (Cys(73)) and sixth (Cys(230)), third (Cys(164)) and seventh (Cys(384)), fourth (Cys(185)) and fifth (Cys(212)), and eighth (Cys(393)) and ninth (Cys(425)) cysteine residues. This pattern of disulfide bond formation differs from that of mouse C2GnT-L, which may contribute to the difference in substrate specificity between these two enzymes. Molecular modeling using disulfide bond assignments and the fold recognition/threading method to search the Protein Data Bank found a match with aspartate aminotransferase structure. This structure is different from the two major protein folds proposed for glycosyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号